Pure and Binary Mixture Gases Adsorption Equilibria of Hydrogen/Methane/Ethylene on Activated Carbon

활성탄에서의 H2/CH4/C2H4 순수 기체와 이성분 혼합기체의 흡착평형

  • Jeong, Byung-Man (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Kang, Seok-Hyun (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Choi, Hyun-Woo (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Lee, Chang-Ha (Department of Chemical Engineering, Yonsei University) ;
  • Lee, Byung-Kwon (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Choi, Dae-Ki (Environment & Process Technology Division, Korea Institute of Science and Technology)
  • 정병만 (한국과학기술연구원 환경공정연구부) ;
  • 강석현 (한국과학기술연구원 환경공정연구부) ;
  • 최현우 (한국과학기술연구원 환경공정연구부) ;
  • 이창하 (연세대학교 화학공학과) ;
  • 이병권 (한국과학기술연구원 환경공정연구부) ;
  • 최대기 (한국과학기술연구원 환경공정연구부)
  • Received : 2005.01.18
  • Accepted : 2005.02.15
  • Published : 2005.06.30

Abstract

Adsorption equilibria of the gases $H_2$, $CH_4$, and $C_2H_4$ and their binary mixtures on activated carbon (Calgon co.) have been measured by static volumetric method in the pressure range of 0 to 18 atm at temperatures of 293.15, 303.15, and 313.15 K. From the parameters obtained from single component adsorption isotherm, multi-component adsorption equilibria could be predicted and compared with experimental data. The binary experimental data were applied to four models : extended Langmuir, extended Langmuir-Freundlich, Ideal Adsorbed Solution theory (IAST), and Vacancy Solution Model (VSM). The models were found to describe the experimental data with a reasonable accuracy. Extended L-F model predicts equilibria of mixture better than any other model.

활성탄 흡착제(Calgon co.)에 대하여 수소, 메탄 그리고 에틸렌의 단일성분 흡착평형과 이들의 혼합가스의 흡착평형을 정적부피법으로 293.15 K, 303.15 K 그리고 313.15 K의 온도와 18 atm의 압력 이하에서 측정하였다. 순수 기체의 흡착등온선을 이용하여 혼합성분의 흡착평형을 예측하였고 실험데이터와 비교하였다. 사용한 모델식은 확대 Langmuir 모델, 확대 Langmuir-Freundlich 모델, 이상 흡착 용액 이론 그리고 빈자리 용액 모델이다. 모델식들은 비교적 정확한 예측치를 보였으며, 이 중 확대 L-F 모델이 혼합 기체의 흡착평형을 다른 모델식보다 좋은 예측결과를 보여줬다.

Keywords

References

  1. Jang, D. G., Shin, H. S., Kim, J. N., Cho, S. H. and Suh, S. S., 'An Analysis on Multibed Process for Hydrogen Purification,' HWAHAK KONGHAK, 37(6), 882-889(1999)
  2. Park, J. H., Kim, J. N. and Cho, S. H., 'Performance Analysis of Four-Bed $H_{2}$ PSA Process Using Layered Beds,' AICHE J., 46(4), 790-802(2000) https://doi.org/10.1002/aic.690460413
  3. Sircar, S. and Kurma, R., 'Adiabatic Adsorption of Bulk Binary Gas Mixtures: Analysis by Constant Pattern Model,' Ind. Eng. Chem. Process Des., 22(2), 271-280(1983) https://doi.org/10.1021/i200021a017
  4. Yang, J. Y., Han, S. S., Cho, C. H. and Lee, H. J., 'Numerical Simulation of Adsorption Bed and Bed Dynamics for $H_{2}/CO$ Gas Mixture,' HWAHAK KONGHAK, 33(1), 56-68(1995)
  5. Yang, J. Y., Cho, C. H., Baek, K. H. and Lee, H. J., 'Comparision of One-bed and Two-bed $H_{2}$ PSA Using Zeolite 5A,' HWAHAK KONGHAK, 35(4), 545-551(1997)
  6. Yang, R. T., 'Gas Separation by Adsorption Processes,' Butterworth, Boston, MA(1987)
  7. Serban, M., Lewis, M. A. and Marshall, C, L., 'Hydrogen Production by Direct Contact Pyrolysis of Natural Gas,' Energy & Fuels, 17(3), 705-713(2003) https://doi.org/10.1021/ef020271q
  8. Ritter, J. A. and Yang, R. T., 'Equilibrium Adsorption of Multicomponent Gas Mixture at Elevated Pressures,' Ind. Eng. Chem. Res., 26(8), 1679-1686(1987) https://doi.org/10.1021/ie00068a032
  9. Valenzuela, D. P. and Myers, A. L., 'Adsorption Equilibrium Data Handbook,' Prentice Hall, Englewood Cliffs, NJ(1989)
  10. Myers, A. L. and Prausnitz, J. M., 'Thermodynamics of Mixed Gas Adsorption,' AICHE J., 11(1), 121-127(1965) https://doi.org/10.1002/aic.690110125
  11. Suwanayuen, S. and Danner, R. P., 'A Gas Adsorption Isotherm Equation Based on Vacancy Solution Theory,' AICHE J., 26(1), 68-76(1980) https://doi.org/10.1002/aic.690260112
  12. Suwanayuen, S. and Danner, R. P., 'Vacancy Solution Theory of Adsorption From Gas Mixtures,' AICHE J., 26(1), 76-83(1980) https://doi.org/10.1002/aic.690260113
  13. Ahmadpour, A., Wang, K. and Do, D. D., 'Comparison of Models on the Prediction of Binary Equilibrium Data of Activated Carbons,' AICHE J., 44(3), 740-752(1998) https://doi.org/10.1002/aic.690440322
  14. Ruthven, D. M., 'Princicles of Adsorption and Adsorption Processes,' Wiley, New York(1984)
  15. Yun, J. H., Park, H. C. and Moon, H., 'Multicomponent Adsorption Calculations Bases on Adsorbed Solution Theory,' Korean J. of Chem. Eng., 13(3), 246-254(1996) https://doi.org/10.1007/BF02705946
  16. Yun, J. H., Choi, D. K. and Kim, S. H., 'Equilibria and Dynamics for Mixed Vapors of BTX in an Activated Carbon Bed,' AICHE J., 45(4), 751-760(1999) https://doi.org/10.1002/aic.690450410
  17. Talu, O. and Zwiebel, I., 'Multicomponent Adsorption Equilibria of Nonideal Mixtures,' AICHE J., 32(8), 1263-1276(1986) https://doi.org/10.1002/aic.690320805
  18. Cochran, T. W., Kabel, R. L. and Danner, R. P., 'Vacancy Solution Theory of Adsorption Using Flory-Huggins Activity Coeffcient Eqations,' AICHE J., 31(2), 268-277(1985) https://doi.org/10.1002/aic.690310214
  19. Kim, J. W., Moon, J. K. and Lee, H. J., 'The Prediction of Binary Gas Mixture Adsorptiion Equilibriua from Single Component Adsorption Isotherms Based on Vacancy Solution Model,' HWAHAK KONGHAK, 27(3), 245-251(1989)
  20. Han, S. S. and Lee, H. J., 'A study on Adsorption Equilibrium of $H_{2}/CO$ Mixture at Elevated Pressure,' HWAHAK KONGHAK, 33(6), 720-733(1995)
  21. Choi, B. U., Choi, D. K., Lee, Y. W. and Lee, B. K., 'Adsorption Equilibria of Methane Ethane, Ethylene, Nitrogen, and Hydrogen onto Activated Carbon,' J. Chem. Eng. Data, 48(3), 603-607(2003) https://doi.org/10.1021/je020161d
  22. Brunauer S., Deming L. S., Deming W. E. and Teller E. J., 'On Theory of The Van der Waals Adsorption Gases,' J. Am, Chem, Soc., 62, 1723-1732(1940) https://doi.org/10.1021/ja01864a025
  23. Buss, E., 'Gravimetric Measurement of Binary Gas Adsorption Equilibria of Methane-Carbon Dioxide Mixtures on Activated Carbon,' Gas Separation & Purification, 9(3), 189-197(1995) https://doi.org/10.1016/0950-4214(95)98226-B