• Title/Summary/Keyword: 흡착력

Search Result 318, Processing Time 0.03 seconds

Study on Adsorption Characteristics of Arsenic on Magnetite (자철석의 비소에 대한 흡착특성 연구)

  • Jeong, Hyeon-Su;Lee, Woo-Chun;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.425-434
    • /
    • 2008
  • Arsenic contamination in soil and groundwater has recently been one of the most serious environmental concerns. This arsenic contamination can be originated from natural or anthropogenic sources. It has been well known that arsenic behavior in geo-environmental is controlled by various oxides or hydroxides, such as those of iron, manganese, and aluminum, and clay minerals. Among those, particularly, iron (oxy)hydroxides are the most effective scavengers for arsenic. For this reason, this study characterized arsenic adsorption of magnetite which is a kind of iron oxide in nature. The physicochemcial features of the magnetite were investigated to evaluate adsorption of arsenite [As(III)] and arsenate [As(V)] onto magnetite. In addition to experiments on adsorption equilibria, kinetic experiments were also conducted. The point of zero charge (PZC) and specific surface area of the laboratory-synthesized magnetite used as an arsenic adsorbent were measured 6.56 and $16.6\;g/m^2$, which values seem to be relatively smaller than those of the other iron (oxy)hydroxides. From the results of equilibria experiments, arsenite was much more adsorbed onto magnetite than arsenate, indicating the affinity of arsenite on magnetite is larger than arsenate. Arsenite and arsenate showed adsorption maxima at pHs 7 and 2, respectively. In particular, adsorption of arsenate decreased with increase in pH as a result of electrical repulsion caused by anionic arsenate and negatively-charged surface of magnetite. These results indicate that the surface charge of magnetite and the chemical speciation of arsenic should be considered as the most crucial factors in controlling arsenic. The results of kinetic experiments show that arsenate was adsorbed more quickly than arsenite and adsorption of arsenic was investigated to be mostly completed within the duration of 4 hours, regardless of chemical speciation of arsenic. When the results of kinetic experiments were fitted to a variety of kinetic models proposed so far, power function and elovich model were evaluated to be the most suitable ones which can simulate adsorption kinetics of two kinds of arsenic species onto magnetite.

Development of Functional Bread with Sea Tangle Single Cell Detritus (SCD) (다시마 Single Cell Detritus(SCD)를 첨가한 기능성 빵의 개발)

  • Bang, Sang-Jin;Choi, Seung-Hwa;Shin, Il-Shik;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1430-1437
    • /
    • 2009
  • Functional bread was manufactured with single cell detritus (SCD) of sea tangle. The optimum ingredient formula for SCD bread was determined based on mixture model. Flour and water reduced max weight, strength, hardness and specific loaf volume, whereas the increased SCD reversed the volume change of dough. Flour increased $L^*$ and $b^*$ values of SCD bread, while SCD decreased. Flour and water decreased $a^*$ value, while SCD increased. Max weight, strength, hardness, specific loaf volume, $b^*$ value and water holding capacity (WHC) were linear model on ANOVA table, whereas distance, volume change of dough, $L^*$ and $a^*$ values were nonlinear model. The response constraint coefficient showed that SCD influenced texture of SCD bread more than flour and water did, whereas water influenced the volume change of dough, specific loaf volume and WHC more than flour and SCD did. Moreover, flour influenced color value more than did water and SCD. Distance and $a^*$ value fitted nonlinear model with interaction terms for flour-SCD and water-SCD. Optimum ingredient formula for SCD bread was: flour, 48.25%; water, 30.89%; SCD, 3.86%. Sensory evaluation of SCD bread was a little lower than industrial bread and electrolyzed SCD bread.

Studies on Physical Behavior of Alkyl Polyglucosides (I) - Interfacial Activities and Detergency - (Alkyl Polyglucoside 계면활성제의 물리적 거동에 관한 연구 (I) - 계면활성과 세정력에 관하여 -)

  • Yoon, Yeo-Kyung;Choi, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.451-456
    • /
    • 1994
  • Alkyl polyglucosides (APG), so called natural nonionic surfactants, are prepared with glucose from corn starch and fatty alcohol from palm and/or coconut oil. When we studied on interfacial properties of APG, surface and interfacial tension, cmc, foaming and effectiveness, according to degree of polymerization of glucose unit (D.P.=1.2~1.8) and alkyl chain length, the former hardly affects but the latter greatly affects on them. The order of detergency for fatty acid soils decreased as followings ; APG 0814> APG 1214> APG 10> APG 0810> APG 08, and the samples with lowest interfacial tension and maximum adsorption had a better detergency.

  • PDF

Identification and Physical Characteristics of the Ancient Charcoals Excavated from Chudong-ri Site, Korea (서천 추동리 문화유적에서 채취된 숯의 수종식별과 물리적 특성)

  • Kim, Myung-Jin;Lee, Jong-Shin;Park, Soon-Bal
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.13-22
    • /
    • 2008
  • The identification of species, hygroscopic property, and ability of ethylene gas absorption of 23 ancient charcoals excavated from wooden coffin burials and roof-tile kilns of Chudong-ri cultural site were investigated. All of the 12 charcoals excavated from wooden coffin burials were broad-leaved trees. Among the total 12 samples, 9 samples were Lepidobalanus and others were Celtis spp.. On the other hand, other 11 charcoals from roof-tile kilns were needle-leaved tree, Pinus spp.(hard pine). The broad-leaved tree charcoals from wooden coffin burials showed a higher moisture absorption capacity than needle-leaved tree charcoals from roof-tile kilns. The ethylene gas absorption was greater in the Lepidobalanus charcoal than that of Celtis spp. and Pinus spp. (hard pine) charcoal. The broad-leaved tree charcoal having high absorption ability of substances was due to a large microporous and specific surface area. Therefore, it was estimated that broad-leaved tree charcoals were filled in order to make favorable condition in tomb. The wood quality of pine is soft and easy to burn because of low specific gravity, as well as high calorific value by resin in wood. We could assume that the pine wood was used as fuel for roof-tile kilns because of easy control of heating and thermal power.

  • PDF

Adhesion of Kimchi Lactobacillus Strains to Caco-2 Cell Membrane and Sequestration of Aflatoxin B1 (김치 유산균의 Caco-2 세포막 부착성 및 Aflatoxin B1 제거 효과)

  • Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.581-585
    • /
    • 2005
  • Five lactic acid bacteria (LAB) including 2 Lactobacillus strains isolated from Kimchi were evaluated to determine the binding ability to Caco-2 cells and $AFB_1$. LAB were divided into three different groups ; viable, heat-treated, and acid-treated cells. In the radioactive-labeling assay for bound cell counting, viable Lactobacillus Plantarum KCTC 3099 showed the higher adhesion to Caco-2 cells with the binding capacity of $39.2\%$, which was $149\%$ higher than Lactobacillus rhamnosus GG as a positive control. Leuconostoc mesenteroids KCTC 3100 showed the similar binding ability to L. rhamnosus GG. After 1 hour incubation at $37^{\circ}C$ with $AFB_1$, viable L. Planterum KTCC 3099 removed the toxin by $49.8\%$, which was similar level to L. rhamnosus GG. Both heat- and acid-treated groups showed high binding effect but acid-treated group was more effective for both Caco-2 cell binding and $AFB_1$ removal than the other. These results indicate that components of bacterial cell wall might be involved in tile binding to intestinal cells and toxins.

Studies on the New Analytical Methods for Separation and Recovery of Rare Earth Metals (I) : Adsorption Characteristics of U(VI) Ion by New Synthetic Resins with Macrocyclic Compounds (희토류금속 분리 및 회수를 위한 분석화학적 연구 (제1보) : 우라늄(VI)의 분리회수를 위한 선택이온교환수지 합성과 우라늄(VI) 금속이온의 흡착특성)

  • Jung Oh Jin;Hak Jin Jung;Joon Tea Kim
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.358-370
    • /
    • 1988
  • Several new ion exchange resins have been synthesized from chloromethyl styrene-1,4-divinylbenzene(DVB) with 1%, 2%, 4%, and 10%-crosslinking and macrocyclic ligands of cryptand type by interpolymerization method. The adsorption characteristics and the pH, time, solvents and concentration dependence of the adsorption of metal ions by this resin were studied. The correlation between the separation characteristics of uranium, rare earths and transition metal on the resins and the stability constants of complexes with macrocyclic ligands have been examined. The resins were very stable in both acidic and basic media and have good resistance to heat at $280^{\circ}C$. The $UO_2^{+2}$ aqueous solution are not adsorbed on the resins below pH 3.0, but the power of adsorption of $UO_2^{2+}$ increased rapidly above pH 4.0. The optimum equilibrium time for adsorption of metallic ions was twenty minutes and adsorptive power decreased in proportion to crosslinking size of the resins and order of dielectric constants of solvents used and the selective sequence for metal cations is in the order of $UO_2^{2+},\;Cu^{2+}\;and\;Nd^{3+}$.

  • PDF

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

물리흡착하는 화학작용제에 대한 방독면 정화통의 성능 연구

  • Im, Jong-Seon;Kim, Cheol-Seong
    • Defense and Technology
    • /
    • no.2 s.240
    • /
    • pp.68-77
    • /
    • 1999
  • 우리 군이 사용하고 있는 K1 방독면은 모든 종류의 화학작용제에 대한 방호력이 뛰어나며 생존성을 보장할 수 있는 화학방호 장비로 병사들은 화학전에 대해 막연한 두려움을 가질 필요가 없으며 자신감을 가져야 할 것이다. 또한 언제든지 화학무기에 대응할 수 있도록 평시에 많은 훈련을 쌓아서 전시에 언제든지 자신감을 가지고 작전을 수행할 수 있는 능력을 구비해야 할 것이다

  • PDF

Preparation of Adsorbent from MSWI Fly Ash and Its Adsorptive Characteristics by Varying the Activation Condition (활성화 조건에 따른 소각비산재로부터 흡착제 제조 및 특성평가)

  • 구명희;심영숙;이우근
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.265-266
    • /
    • 2002
  • 휘발성 유기화합물(Volatile Oraganic Compounds: VOCs)은 오존 등의 광화학 스모그 생성의 원인물질일 뿐만 아니라 발암성의 유해물질, 지구온난화, 대기중의 악취물질 등으로 환경 및 건강에 악영향을 초래한다. 최근 들어 VOCs에 대한 대기중 배출규제가 강화됨에 따라 이를 효과적으로 제거 또는 회수하는 연구가 매우 중요시되고 있으며, 활성탄을 이용한 흡착은 이러한 기체상의 VOCs 분자를 고체 흡착제에 약한 분자력의 인력에 의해 접촉시켜 분리하는 공정으로 회수율 및 에너지 절약의 관점에서 효과적인 방법으로 알려져 있다. (중략)

  • PDF