• Title/Summary/Keyword: 흡착/탈착

Search Result 458, Processing Time 0.02 seconds

Characteristics of Desorption and Recycling Capacity for Previously Adsorbed Silver into Waste Coffee Grounds (커피찌꺼기에 흡착된 은 이온의 탈착 및 재생 특성)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.15-21
    • /
    • 2016
  • This experiment was conducted to test desorption and recycling characteristics for silver ion adsorbed into waste coffee grounds by using various desorbing agents such as nitric acid, ethylene diamine triacetic acid (EDTA) and nitrilo triacetic acid (NTA). It is appeared that the highest desorption efficiency for silver ions was obtained as about 97.8 % by 1.0 M of nitric acid solution. Also, in the case of less than 1.0 of the ratio of solid and liquid (S/L) (g/L), silver ions adsorbed onto coffee grounds was desorbed as about 98~100 %, and most of desorption process was completed within 60min. In addition, adsorption capacity of reused waste coffee grounds for silver ions was highly maintained as about 43.9 mg/g until the $2^{nd}$ cycle, as compared with the adsorption capacity with 45.9 mg/g of the adsorption capacity for virgin waste coffee grounds.

Effect of Immobilization Method in the Biosorption and Desorption of Lead by Algae, Chlorella pyrenoidosa (Chlorella pyrenoidosa에 의한 납 흡.탈착시 고정화 방법의 영향)

  • Shin, Taek-Soo;Lim, Byung-Seo;Lee, Sang-Woo;Rhu, Kwon-Gul;Jeong, Seon-Ki;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.663-672
    • /
    • 2009
  • In this studies, the adsorption test using Chlorella pyrenoidosa was conducted to examine the effect of Pb adsorption according to various immobilized methods such as Ca-alginate, K-carrageenan, and Polyacrylamide. From the results, the duration to need to reach adsorption equilibrium was delayed according to the immobilization. And, the higher adsorption capacity of immobilized Chlorella pyrenoidosa was represented in the higher concentration of Pb, the smaller amount of immobilizing agent, and the higher pH of solution. The maximum adsorption capacity of Pb was shown in the adsorption test using Chlorella pyrenoidosa immobilized with Ca-alginate even though it was sensitive pH. The adsorption results properly represented with Freundlich isotherm equations. And, pseudo second-order chemisorption kinetic rate equation was applicable to all the biosorption data over the entire time range. The FT-IR analysis showed that the mechanism involved in biosorption of Pb by Chlorella pyrenoidosa was mainly attributed to Pb binding of carbo-acid and amide group. Adsorbed Pb on immobilized Chlorella prenoidosa was easily desorbed in the higher concentration of desorbents(NTA, HCl, EDTA, $H_2SO_4,\;Na_2CO_3$). Among the several desorbents, NTA showed the maximum desoption capacities of Pb from Chlorella pyrenoidosa immobilized with Ca-alginate and K-carrageenan and EDTA was the most effective in Chlorella pyrenoidosa immobilized with polyacrylamide. The desoprtion efficiency in the optimum condition was 90.0, 83.0, and 80.0%, respectively.

Study on Heavy Metal Desorption and Recovery of the Carbon Foam used in Industrial Plating Wastewater Treatment as Adsorbent (산업도금폐수 처리에 사용된 탄소폼 흡착소재의 중금속 탈착 및 회수에 관한 연구)

  • Lee, Da-Young;Lee, Chang-Gu;Kim, Dae-Woon;Park, Sang-Hyen;Kweon, Ji-Hyang;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.627-634
    • /
    • 2016
  • We investigated the characteristics of heavy metal desorption and recovery from carbon foam after plating wastewater treatment. The heavy metal desorption depends on solution chemistry because desorption occurred in HCl and $H_2SO_4 $ solution but did not occur in distilled water. Heavy metal desorption efficiency was increased using ultrasonication with desorption solution. The higher ultrasonic power and the longer reaction time improve efficiency. The copper plating rinse solution was treated reliably by carbon foam adsorbent during 200 bed volume. The adsorbed copper was dissolved using desorption solution and recovered by DC power supply. After copper recovery, the reuse efficiency of desorption solution was 84.2%.

Effect of Calcination on Hydrogen Adsorption and Desorption in Pt/MoO3/SiO2 (소성 조건이 Pt/MoO3/SiO2 촉매의 수소 흡착 및 탈착에 미치는 영향)

  • Cho Sae Jung;Lee Ju Heon;Cho Ji Eun;Kim Seong-Soo;Kim Jin Cul
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.277-279
    • /
    • 2004
  • $300^{\circ}C$ 소성 Pt/MoO3가 수소를 흡착후 탈착하는 속도를 측정하였다. 두가지 흡착 속도를 나타내는 Pt/MoO3 촉매에서 탈착량은 흡착량과 탈착 온도의 증가에 비례하는 것을 알 수 있었다. 또한 X-Ray Photoelectron Spectroscope(XPS) 결과로부터 Pt와 MoO3간의 활성점에 존재하는 Cl의 존재가 수소 이동 속도를 결정하는 것으로 판단되었다.

  • PDF

흡착제의 세공크기분포에 따른VOCs의 흡${\cdot}$탈착특성

  • Kwon, Jun-Ho;Gu, Kyung-Ran;Gang, Jung-Hwa;Lee, Song-Woo;Na, Young-Su;An, Chang-Duk;Yoon, Young-Sam;Song, Seung-Gu
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2005.11a
    • /
    • pp.94-96
    • /
    • 2005
  • Acetone vapor흡착에서는 활성탄의 BJH 비표면적과 탈착량을 비교했을때 10${\AA}$이하에서는 다층흡착이 일어나며 그 이상의 세공크기에서는 단층 흡착이 일어나는 것으로 판단된다. 동일한 특성을 가진 MEK vapor흡착에서도 활성탄의 BJH 비표면적과 탈착량을 비교했을때 15 ${\AA}$이하에서는 다층흡착이 일어나며 그이상의 세공크기에서는 단층 흡착이 일어나는 것으로 판단된다. 위 실험을 통해 흡착질의 크기와 흡착제의 세공크기 분포에 Knudsen diffusion의 영역을 고려하여 흡착제를 사용하는 것이 좋은 것으로 판단된다.

  • PDF

Carbon dioxide adsorption - desorption characteristics of zeolite for the removal of indoor carbon dioxide (실내공간 이산화탄소 저감용 제올라이트의 이산화탄소 흡착 및 탈착성능 분석)

  • Lee, Ji-Yun;Cho, Young-Min;Kwon, Soon-Bark;Park, Duck-Shin;Lee, Ju-Yeol
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1115-1118
    • /
    • 2010
  • 최근 실내공기질에 대한 관심이 높아지면서 실내공기질을 쾌적하게 유지하기 위한 다양한 기술에 대한 연구가 활발히 이루어지고 있다. 기존에는 미세먼지와 부유미생물 등이 가장 중요한 오염물질이었으나, 최근에는 이산화탄소가 크게 각광받고 있다. 이산화탄소는 그 자체가 환기의 지표이기도 하지만, 최근의 저탄소 녹색성장 기조에 따라 환기에 의한 냉난방 에너지 비용을 절감하는 방안에 대한 관심도 크게 높아지고 있다. 본 연구에서는 제올라이트를 이용하여 실내공간의 이산화탄소를 제어하는 방안에 대하여 기술하였다. 소형 lab-scale의 이산화탄소 흡착성능 평가시스템을 제작하고, 이를 이용하여 제올라이트의 이산화탄소의 흡착성능을 알아보았다. 또한, 본 시스템의 실용화를 위해서는 이산화탄소가 흡착한 제올라이트의 재생이 필요한데, 이를 위하여 다양한 온도와 압력 등의 조건 하에서 이산화탄소의 탈착성능을 TSA/PSA를 이용하여 알아보았다. 흡착실험을 통하여 제올라이트를 이용한 실내공간용 이산화탄소의 저감 효과를 확인할 수 있었다. 그러나, 탈착실험 결과 2~5회 정도 열탈착 시킨 후에는 이산화탄소의 흡착 성능이 현저하게 감소하여, 이를 개선하기 위한 방안의 개발이 필요함을 알 수 있었다.

  • PDF

Effect of Initial Adsorbed Amount, Temperature, and pH on the Desorption of Phenol from Activated Carbon by Organic Solvents (초기 흡착량, 온도, pH가 활성탄 피흡착물인 페놀의 유기용매 탈착에 미치는 영향에 대한 연구)

  • Kim, Seungdo;Oh, Young-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1985-1994
    • /
    • 2000
  • This research was designed to investigate the effect of initial adsorbed amount of phenol, temperature, and pH on the desorption reaction of phenol from spent activated carbon loaded with phenol. Methanol, acetone, and N,N-dimethylformamide( DMF) were used as test organic solvents. The initial adsorbed quantities of phenol investigated here were 166.1mg/g, 180.7mg/g, and 197.9mg/g. The effect of temperature was evaluated from 15 to $55^{\circ}C$ with an interval of $10^{\circ}C$, while that of pH was investigated under acidic. neutral. and alkaline conditions. The extent of phenol desorption was proportional to the strength of dipole moment such as methanol < acetone < DMF. Over 90% desorption of phenol was achieved by acetone and DMF. The quantity of des orbed phenol by the organic solvents decreases with increasing the initial adsorbed amount of phenol. DMF is affected least by the initially adsorbed amount of phenol. An increase in reaction temperature leads to higher desorption of phenol. Desorption reaction by methanol is most sensitive to the temperature. As the pH of solvents increases. the desorption rate is also increasing. At pH=12. the desorption rate of phenol by methanol increases sharply by 10%. Although methanol demonstrated the weakest desorption power. the desorption capacity of methanol would approach that of acetone and DMF by adjusting temperature and pH. Methanol may emerge as a promising solvent for removing phenol from activated carbon because of acceptable regeneration efficiency as well as relatively cheap price.

  • PDF

A Study of Benzene Desorption Characteristics Using Steam on Activated Carbon (벤젠이 흡착된 활성탄의 수증기에 의한 탈착특성 연구)

  • Kwon, Jun Ho;Min, Byong Hoon;Suh, Sung-Sup
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.217-223
    • /
    • 2006
  • The operating variables of a desorption step were experimentally investigated tor the cycle of the process made up of benzene adsorption, steam desorption, and drying step. The effect of adsorbent regeneration depending on existence and nonexistence of drying step was studied by breakthrough curves obtained in the adsorption step of the second cycle. The duration of drying step was determined by the experimental results. In case that the amount of nitrogen gas was fixed, the regeneration efficiency increased with the amount of steam. However, the effect of steam decreased as the amount of nitrogen increased. Therefore, it would be possible to predict the optimum amount of steam comparing the amount of nitrogen gas with amount of steam in economic view.

  • PDF

Removal of Cd(II) by Cation Exchange Resin in Differential Bed Reactor (미분층반응기에서 양이온 교환수지에 의한 카드뮴(II)의 제거)

  • Kim, Jong-Tae;Chung, Jaygwan G.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1193-1203
    • /
    • 2000
  • In this study, in order to remove Cd(II) from aqueous solutions, strongly acidic cation exchange resin(SK1B) by Diaion Co. was employed as an adsorbent. Experiments were mainly performed in two parts at room temperature($25{\pm}5^{\circ}C$) : batch tests and adsorption kinetics tests. In batch tests adsorption equilibrium time, pH effects, temperature effects, several adsorption isotherms, and finally desorption tests were examined. In differential bed tests, an optimum flow rate and an overall adsorption rate were obtained. In the batch experiment, adsorption capability increased with pH and became constant above pH 6 and adsorption quantity increased with temperature. Batch experimental data found that Freundlich and Sips adsorption isotherms were more favorable than Langmuir adsorption isotherm over the range of concentration (5~15ppm). The desorbent used in the desorption test was hydrochloric acid solution with different concentrations(0.01~2N). The degree of regeneration increased with concentration of desorbent and decreased slightly with the number of regeneration. In the continuous flow process using a differential bed reactor, the optimum flow rate was $564m{\ell}/min$ above which the film diffusion resistance was minimized. The overall adsorption rate for the removal of Cd(II) by cation exchange resin was found as follows ; $r=1.3785C_{fc}^{1.2421}-2.0907{\times}10^{0.0746C_i}\;q_e^{0.0121C_i-0.0301}$

  • PDF

Biosorption and Desorption of Pb by Using Sargassum sagamianum (해조류, Sargassum sagamianum을 이용한 Pb 흡착 및 탈착)

  • Seo, Geun-Hak;An, Gap-Hwan;Gong, In-Su
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.611-615
    • /
    • 1999
  • Biosorption of Pb was evaluated for Sargassum sagamianum. An adsorption equilibrium was reached in about 1 hr. The uptake capacity of Pb was 224.5 mg Pb/G biomass. The adsorption parameters for Pb were determined according to Langmuir and Frueundlich model. With increasing pH, more negative sites are becoming available for adsorption of Pb. When Ca and Mg concentration increases in Pb solution, Pb was selectively adsorbed. The Pb adsorbed by S. sagamianu could be desorbed by desorption process and the efficiency from 0.1M HCl, 0.1M HNO$_3$and 0.1M EDTA was above 95%. S. Sagamianum was reused 6 times and the total uptake was 736.8 mg Pb/g biomass.

  • PDF