• Title/Summary/Keyword: 흡수 이행

Search Result 193, Processing Time 0.043 seconds

Development of Carbon Dioxide Dissolution in Water System Using Nano Bubble Technology (나노버블 기술을 이용한 수중 이산화탄소 용해 시스템 개발)

  • Byeong Chan Na;Wooseok Yeo;Deok-Hyeon Kim;Jung Jun Park;Jong Kyu Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.464-464
    • /
    • 2023
  • 최근 이산화탄소(Carbon Dioxode, CO2) 배출량 증가로 인하여 지구온난화와 같은 기후변화 문제가 심각한 사회 문제로 대두되고 있다. 이에 따라 2015년 12월 12일 프랑스 파리에서 열린 제21차 유엔기후변화협약에서 교토의정서를 대체하는 파리협정(Paris Agreement)을 채택하였으며, 국내에서는 이러한 국제사회의 기후변화 대응에 동참하고 온실가스 감축을 이행하기 위한 2050 탄소중립 정책을 추진하였다. 이산화탄소를 다량으로 발생시키는 철강·산업·건설·에너지 분야 중건설 분야에서 배출되는 이산화탄소는 전체 배출량의 19.9%로 특히 시멘트를 제조하는 과정에서 많은 양의 이산화탄소가 배출되고 있다. 기존의 건설 분야 에서는 이산화탄소를 저감하기 위해 콘크리트 배합 또는 양생과정에서 챔버 내 이산화탄소를 가스 형태로 주입하여 탄산화 반응을 통해 콘크리트 내부에 이산화탄소를 영구히 저장시키고자 하였다. 그러나 이는 챔버 사용, 양생조건 등 적용 조건이 제한적이며, 콘크리트 내 이산화탄소 흡수 효율이 높지 않아 이를 개선할 수 있는 기술이 필요하다. 이를 개선하기 위해 최근에는 콘크리트 배합수 내 이산화탄소를 용해시켜 배합과정에서 콘크리트 내부로 이산화탄소를 강제로 인입시키는 연구들이 진행되고 있다. 그러나 콘크리트 배합수로 사용되고 있는 일반물이나 지하수의 경우 가압을 하여도 약 1,400mg/L의 이산화탄소를 용해시키며, 가압을 통해 용해된 이산화탄소는 쉽게 대기 중으로 방출되는 한계점을 지니고 있어 현장에서 사용하기 어려운 문제가 있다. 이러한 한계점을 극복하기 위해서 본 연구에서는 200nm 이하의 크기를 가지는 나노버블기술을 이용해 압력을 가하지 않은 상태에서 수중에 이산화탄소를 용해시킬 수 있는 시스템을 개발하고자 한다. 나노버블기술을 이용한 수중 이산화탄소용해 시스템을 통해 수중에 이산화탄소를 용해시켜 콘크리트 배합수로 활용하기 위한 기초 연구가 될 것으로 판단된다.

  • PDF

Spawning Behavior and Early Life History of Takifugu pardalis (Teleostei: Tetraodontidae) in Korea (졸복, Takifugu pardalis (Temminck et Schlegel)의 산란습성 및 초기생활사)

  • Han, Kyeong-Ho;Cho, Jae-Kwon;Lee, Sung-Hun;Hwang, Dong-Sik;Yoo, Dong-Jae
    • Korean Journal of Ichthyology
    • /
    • v.13 no.3
    • /
    • pp.181-189
    • /
    • 2001
  • Spawning behavior of the Takifugu pardarlis (Temminck et Schlegel) was observed on the Jook-do coast in Tongyong from March 1997 to June 1999. The spawning ground was locted in the intertidal zone between Tongyong and Koje-do. Its bottom was mainly gravels and stones, and its depth was 0.5~1.0 m. Spawning season was from the end of the March to the middle of May. During the spawning season, the mature fishes formed school a of 10~30 individuals, then moved to the spawning ground together. When a mature female spawned eggs, the attendant males fertilized them at the same time. The fertilized eggs obtained from the parent fishes caught at the spawning ground were adhesive, opaque and spherical, measuring 1.14~1.24 mm (mean 1.19 mm, n = 50) in diameter with numerous tiny oil globules. Hatching period was about 205 hours after fertilization at water temperature of $18.0{\pm}0.5^{\circ}C$. The newly hatched larvae were 2.92~3.10 mm (mean 3.01 mm, n = 20) in total length (TL), had a large yolk, and 11~13+14~15 = 25~28 myomeres. At 5 days, the larvae had attained 3.79~3.85 mm (mean 3.82 mm, n = 20) in TL and had transformed into the postlarval stage. At 15 days, the postlarvae had attained 7.78~7.90 mm (mean 7.84 mm, n = 20) in TL. At 21 days, had larvae attained 10.15~10.27 mm (mean 10.21 mm, n = 20) in TL and had reached the juvenile stage. All fins were formed with a complete set of fin rays having the following counts: dorsal fin rays 11~12; anal fin rays 9; pectoral fin rays 14~15; caudal fin rays 11~12.

  • PDF

Behaviour of the Soil Residues of the Acaricide-Insecticide, [$^{14}C$]Acrinathrin;I. Behaviour during Crop(Maize) Cultivation (살비살충제 [$^{14}C$Acrinathrin 토양 잔류물의 행적 규명;I. 농작물(옥수수) 재배시의 행적)

  • Lee, Jae-Koo;Kyung, Kee-Sung;Kwon, Jeong-Wook;Ahn, Ki-Chang;Jung, In-Sang
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.186-201
    • /
    • 1995
  • In order to elucidate the fate of the residues of the pyrethroid acaricide-insecticide, acrinathrin in soil, maize plants were grown for one month on the specially-made pots filled with two different types of soils containing fresh and one-month-aged residues of [$^{14}C$]acrinathrin, respectively. The mineralization of [$^{14}C$]acrinathrin to $^{14}CO_2$ during the one-month period of aging and of maize cultivation amounted to $23{\sim}24%$ and $24{\sim}33%$, respectively, of the original $^{14}C$ activities. At harvest after one-month growing, the shoots and roots contained less than 0.1% and 1% of the originally applied $^{14}C$ activity, respectively, whereas the $^{14}C$ activity remaining in soil was $65{\sim}80%$ in both soils. Three degradation products with m/z 198(3-phenoxybenzaldehyde), m/z 214(3-phenoxybenzoic acid), and m/z 228(methyl 3-phenoxybenzoate) besides an unknown were identified from acetone extracts of both soils without and with maize plants after treatment of [$^{14}C$]acrinathrin, by autoradiography and GC-MS, and those with m/z 225(3-phenoxybenzaldehyde cyanohydrin) and m/z 198 (3-phenoxybenzaldehyde) from acetone extract of the Soil A treated with 50 ppm acrinathrin and grown with maize plants for 30 days were identified by mass spectrometry. These results suggested that the hydrolytic cleavage of the ester linkage adjacent to the $^{14}C$ with a cyano group, forming 3-phenoxybenzaldehyde cyanohydrin. The removal of hydrogen cyanide therefrom leads to the formation of 3-phenoxybenzaldehyde as one of the major products. The subsequent oxidation of the aldehyde to 3-phenoxybenzoic acid, followed by decarboxylation would evolve $^{14}CO_2$. Solvent extractability of the soils where maize plants were grown for 1 month and/or [$^{14}C$]acrinathrin was aged for 1 month was less than 31% of the original $^{14}C$ activity and over 95% of the total $^{14}C$ activity in soil extracts was distributed in the organic phase. Accordingly, acrinathrin turned out to be degraded rapidly in both soils and be bound to soil constituents as well, not being available to crops.

  • PDF

Leaching of the herbicide quinclorac in soil columns (제초제 quinclorac의 토양컬럼 중 용탈)

  • Ahn, Ki-Chang;Kyung, Kee-Sung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.19-25
    • /
    • 2000
  • The leaching behaviour of quinclorac was elucidated using soil columns. On top of each glass column packed with a rice paddy soil up to the 30 cm height were applied three different treatments of [$^{14}C$]quinclorac: quincloiac only (T-1), quinclorac adsorbed onto active carbon (T-2), and quinclorac adsorbed onto a mixture of active carbon and $Ca(OH)_{2}$ (T-3). Half of the columns were planted with rice plants for 17 weeks and half of them unplanted for comparison. Average amounts of $^{14}C$-activity percolated from tile soil columns without rice plants in T-1, T-2, and T-3 were 81.1%, 27.8% and 48.0%, respectively, of tile originally applied $^{14}C$, whereas those with rice plants grown were 36.8%, 9.6% and 11.0%, respectively, indicating that the leaching of [$^{14}C$]quinclorac was significantly affected by vegetation and by treatment with the adsorbents. The bioavailability of the herbicide to rice plants in T-1, T-2, and T-3 were 13.6%, 11.0% and 13.9%, respectively. The residue levels of quinclorac in the edible part of rice grains would be far less than the maximum residue limit (MRL, 0.5 ppm). After the leaching, the amounts of $^{14}C$ remaining in soil in with rice planting T-1, T-2, and T-3 were 36.3%, 73.7%, and 61.8%, whereas those without rice planting were 19.7%, 71.1%, and 52.3%, respectively. The balance sheets indicate that [$^{14}C$]quinclorac translocated to rice shoots would be lost by volatilization and/or in other ways in T-1 and T-3. The $^{14}C$-activity partitioned into the aqueous phase of the leachates collected from all treatments was less than 7% of the total, but it increased gradually with time in the case of rice growing, suggesting tile formation of some polar degradation products.

  • PDF

Fate of the herbicide bensulfuron-methyl in a soil/rice plant microecosystem (벼 재배 microecosystem 내에서 제초제 bensulfuron-methyl의 행적)

  • Lee, Jae-Koo;Fuhr, F.;Kwon, Jeong-Wook;Ahn, Ki-Chang;Park, Ju-Hyoung;Lee, Yong-Pil
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • In order to elucidate the behavior of bensulfuron-methyl, a sulfonylurea herbicide, in a soil/plant microecosystem, rice plants (Oryza sativa L.) were grown for 12 weeks in the specially made stainless steel pots (17cm I.D. $\times$ 10cm H.) containing two different paddy soils treated with fresh and 13-week-aged residues of [phenyl-$^{14}C$]bensulfuron-methyl, respectively. During the aging period, the mineralization to $^{14}CO_2$ from soil A (OM, 3.59%; CEC, 7.65 $cmol^+\;kg^{-1}$; texture, sandy clay loam) and B (OM, 1.62%; CEC, 4.51 $cmol^+\;kg^{-1}$; texture, sandy loam) amounted to 6.79 and 10.15% of the originally applied $[^{14}C]$bensulfuron-methyl, respectively. The amounts of $^{14}CO_2$ evolved from the soils with fresh residues were higher than those from the soils with aged residues. At harvest after 12-week growing, $^{14}C$-radioactivity absorbed and translocated into rice plants from soils A and B containing fresh residues of bensulfuron-methyl was 1.53 and 4.40%, while 4.04 and 6.37% in the two soils containing aged residues, respectively. Irrespective of aging and soil type, the $^{14}C$-radioactivity remaining in soil ranged from 80.41 to 98.87% of the originally applied $[^{14}C]$bensulfuron-methyl. The solvent extractability of tile soils was $39.25\sim70.39%$, showing the big differences among the treatments. Most of the nonextractable soil-bound residues of $[^{14}C]$bensulfuron-methyl were incorporated into the fulvic acid fraction$(61.32\sim76.45%)$. Comparing the microbial activity of the soils with rice plants grown with that of the soils without them, the former was $1.6\sim3.0$ times higher than the latter. However, it did not correlate with the $^{14}CO_2$ evolution.

Distribution and Mobility of Herbicide $^{14}C$-Molinate in a Rice-Paddy-Soil Lysimeter (벼 재배 Lysimeter 환경에서 제초제 $^{14}C$-molinate의 분포 및 이동성 평가)

  • Park, Byung-Jun;Kim, Chan-Sub;Park, Kyung-Hun;Park, Hyeon-Ju;Im, Geon-Jae;Choi, Ju-Hyeon;Shim, Jae-Han;Ryu, Gab-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.3
    • /
    • pp.172-182
    • /
    • 2006
  • This study was designed to assess molinate fate in the lysimeter by measuring the total radioactivity in the leachate, evolved $^{14}CO_2$, and $^{14}C$-residues in soil and rice plant. The amounts of applied $^{14}C$ in the leachate from the lysimeter for 20 weeks were 1.05% in 2.31 pore volume (217,465 mL) at the first and 0.34% in the second year, respectively. The amount of $^{14}CO_2$ evolved from the lysimeter accounted for 6.47% and 0.03% of applied $^{14}C$ in the first and second year. The $^{14}C$-activities in the soil layer of the lysimeter were distributed 18.0% (1st) and 13.3%(2nd) in the depth of 0 to 10 cm, 4.3 (1st) and 1.1% (2nd) in the depth of 10 to 20 cm. Most of the applied $^{14}C$ was detected in the top 20 cm soil layer. Total $^{14}C$ in rice plants grown at lysimeter were detected 11.46% of applied $^{14}C$. 11.11% in straw, 0.24% in brown rice grain, 0.08% in chaff and 0.03% in ears were distributed in the first year. Consequently, environmental fate of molinate using lysimeter simulating a paddy rice field were investigated 25.24% in soil, 11.64% in rice plant, 1.05% in leachate, 6.74% in evolved $^{14}CO_2$ and 0.02% in volatilized organic chemicals in the first year.

Transfer Factor of Heavy Metals from Agricultural Soil to Agricultural Products (농작물 재배지 토양 내 비소, 납 및 카드뮴의 농산물로의 전이계수 산출)

  • Kim, Ji-Young;Lee, Ji-Ho;Kunhikrishnan, Anitha;Kang, Dae-Won;Kim, Min-Ji;Yoo, Ji-Hyock;Kim, Doo Ho;Lee, Young-Ja;Kim, Won Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.300-307
    • /
    • 2012
  • BACKGROUND: The Transfer Factor (TF) of heavy metals from soil to plant is important, because TF is an indicator of heavy metal in soils and a factor that quantifies bioavailability of heavy metals to agricultural products. This study was conducted to investigate the transfer ability of Arsenic (As), Cadmium (Cd), and Lead (Pb) from soil to agricultural products. METHODS AND RESULTS: We investigated heavy metals (As, Cd and Pb) concentrations in 9 agricultural products (rice, barely, corn, pulse, lettuce, pumpkin, apple, pear, tangerin) and soil. TF of agricultural products was evaluated based on total and HCl-extractable soil concentration of As, Cd, and Pb. Regression analysis was used to predict the relationship of total and HCl-extractable concentration with agricultural product contents of As, Cd, and Pb. The result showed that TF was investigated average 0.006~0.309 (As), 0.002~6.185 (Cd), 0.003~0.602 (Pb). The mean TF value was the highest as rice 0.309 in As, lettuce 6.185, pear 0.717, rice 0.308 in Cd, lettuce 0.602, pumpkin 0.536 in Pb which were dependent on the vegetable species and cereal is showed higher than fruit-vegetables in As. CONCLUSION(S): Soil HCl-extractable concentration of As, Cd, and Pb had the larger effects on thier contents in agricultural products than total soil concentrations. We suggests that TF are served as influential factor on the prediction of uptake. Further study for uptake and accumulation mechanism of toxic metals by agricultural products will be required to assess the human health risk and need TF of more agricultural products.

Studies on lead uptake by crops and reduction of it's damage. -IV. Effects of application of calcium and phosphate materials on lead uptake by upland crops (농작물(農作物)에 대(對)한 납(Pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -IV. 밭작물(作物)의 납 흡수이행(吸收移行)과 석회(石灰) 및 인산(燐酸)의 영향(影響))

  • Kim, Bok-Young;Kim, Kyu-Sik;Han, Ki-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.4
    • /
    • pp.426-433
    • /
    • 1988
  • A pot experiment was conducted to find out the effects of application of slacked lime and fused super-phosphate on the lead uptake of upland crops in a lead added soil. Lead concentration of the soils were adjusted to 0, 150, 300mg/kg respectively. The slacked lime was applied at the equivalent amount of lime requirement with extra 150kg/10a, and 2 times for the fused superphosphate. The results obtained were as follows: 1. Lead contents in crops increased in the order: sesame > maize > potato > sweet potato > soybean > green perilla > peanut > red bean. 2. Lead contents in parts of crops were increased in the order; root > stem > leaf > grain. 3. Increasing lead concentration in soils, lead content in the plant was increased and crops yield were decreased. 4. Lead contents in soybean and green perlilla were decreased in slacked lime application treatment. 5. The lead contents in leaf and grain of soybean and green perllila decreased with decreasing in the ratio of Pb/Ca+Mg equivalent in soil. 6. Grain yield were increased in slacked lime, but were decreased in fused superphosphate application treatment. 7. With increasing the soil Pb contents, calcium and phosphate contents were increased in leaf and stem, but calcium was decreased in roots. 8. $1N-NH_4$ OAC soluble Pb contents in soil were 26-50 ppm and 42-70 ppm, respectively, for 150mg/kg and 300mg/kg lead treatments. 9. The soil pH was increased in the order of slacked lime, fused superphosphate and nontreatment.

  • PDF

Controlled Release of 2,4-D(2,4-Dichlorophenoxy Acetic Acid ) from the Complex of Rice Husk Lignin and 2,4-D-IV. Variation of Herbicidal Activity by Soil Environmental Factors (조곡(組穀) Lignin과 2,4-D (2,4-Dichlorophenoxy Acetic Acid) 결합체(結合體)의 방출제어(放出制御) 연구(硏究)- IV. 토양환경요인(土壤環境要因)에 따른 제초활성(除草活性)의 변이(變異))

  • Guh, J.O.;Lee, D.J.;Lim, K.P.;Kwon, S.L.
    • Korean Journal of Weed Science
    • /
    • v.10 no.2
    • /
    • pp.114-121
    • /
    • 1990
  • Inactivation in soil absorption, translocation of 2, 4-D by plants vary depending upon soil environments and herbicide formulations. Experiment was conducted in a glasshouse using rectangular pots($1350cm^2$) to evaluate the growth responses of barnyardgrass (Echinochloa crus-galli) and Indian jointvetch (Aesehyrcomene indica) to two formulations of 2, 4-D. The formulations used were 40% 2, 4-D amin salt (2, 4-D/AS) and 19.7% complex of rice husk lignin and 2, 4-D (2, 4-D/LG) which were applied at 200g ai/ha. Soil environments included fertilizer levels, soil pH, organic matter contents, and soil textures, Each treatment was replicated three times. The herbicidal activity of 2.4-D increased and lasted with increased levels of fertilizer. The activity also increased and lasted with low soil pH and decreased content of organic matter. Generally 2, 4-D/LG showed higher and longer herbicidal activity than 2. 4-D/AS for both test plants under all conditions applied. However, the herbicidal activity was influenced by the formulations more than by soil textures. It was thought that 2, 4-D/AS was released in a short time and inactivated readily while 2, 4-D/LG was slowly released and gave an opportunity of absorption by plants for a long period.

  • PDF

Establishment of Safe Management Guideline Based on Uptake Pattern of Pesticide Residue from Soil by Radish (토양잔류 농약의 무 흡수양상 및 토양 안전관리기준 설정)

  • Hwang, Jeong-In;Kwak, Se-Yeon;Lee, Sang-Hyeob;Kang, Min-Su;Ryu, Jun-Sang;Kang, Ja-Gun;Jung, Hye-Hyeon;Hong, Sung-Hyeon;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • BACKGROUND: Uptake patterns of ${\alpha}$-, ${\beta}$-isomers and sulfate metabolite of endosulfan (ED) by radishes grown in treated soils with ED concentrations of 2 and 10 mg/kg were investigated to establish soil management guidelines for ensuring the safety of radishes from ED residues. METHODS AND RESULTS: All samples of soils and radish plants separated into shoot and root parts were analyzed for ED residues using a gas-chromatography mass spectrophotometer, and the results were used to calculate the bioconcentration factor (BCF), indicating the ratio of ED concentrations between radishes and soils. During the experimental period, uptake and distribution rates of ED-sulfate in radishes were the highest, followed by ${\alpha}$- and ${\beta}$-ED. The BCF values to initial ED concentrations in soils were greater for root parts (0.0077 to 0.2345) than for shoot parts (0.0002 to 0.0429) and used to obtain regression equations by time. Long-term BCFs estimated by the obtained equations ($R^2$ of 0.86 to 1.00) were evaluated with the maximum residue limit (0.1 mg/kg) of ED for radishes, in order to suggest safe management guidelines of ED for radish-cultivating soils. CONCLUSION: Suggested guidelines showed the significant dependency on duration for radish cultivation and exposed concentration of ED in soil.