• Title/Summary/Keyword: 흡수식 사이클

Search Result 41, Processing Time 0.028 seconds

Simulation of an Absorption Power Cycle for Maximizing the Power Output of Low-Temperature Geothermal Power Generation (저온 지열발전의 출력 극대화를 위한 흡수식 동력 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Yoon, Hyung-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.145-151
    • /
    • 2010
  • In this study, an absorption power cycle, which can be used for a low-temperature heat source driven power cycle such as geothermal power generation, was investigated and optimized in terms of power by the simulation method. A steady-state simulation model was adopted to analyze and optimize its performance. Simulations were carried out for the given heat source and sink inlet temperatures, and the given flow rates were based on the typical power plant thermal-capacitance-rate ratio. The cycle performance was evaluated for two independent variables: the ammonia fraction at the separator inlet and the maximum cycle pressure. Results showed that the absorption power cycle can generate electricity up to about 14 kW per 1 kg/s of heat source when the heat source temperature, heat sink temperature, and thermal-capacitance-rate ratio are $100^{\circ}C$, $20^{\circ}C$, and 5, respectively.

Performance Characteristic of the Compression-Absorption Hybrid Heat Pump Cycles (흡수압축 하이브리드 히트펌프 사이클의 성능특성)

  • Yoon J. I.;Kwon O. K.;Yang Y. M.
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.14-20
    • /
    • 1999
  • This study describes the results of Coefficient of Performance(COP) analysis by cycle simulation for two types of absorption-compression hybrid cycle using the Water/Lithium Bromide solution pair. These types are basic hybrid systems introducing a mechanical compression process into the refrigerant vapor phase of the single effect absorption cycle. In absorption-compression hybrid cycles, coefficient of performance is improved compared with absorption cycle. Hybrid cycle Type 2 is considered as a key technology to support energy utilization system, given its capability of utilizing waste heat to drive system with a high level of efficiency.

  • PDF

Optimization Study of the Compression/Absorption Hybrid Heat Pump Cycle (증기압축식/흡수식 하이브리드 히트펌프 사이클에 관한 최적화 연구)

  • 전관택;박춘건;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.48-58
    • /
    • 2001
  • For the past few decades the vapor compression cycle with a solution circuit (VCCSC) has been known to provide high efficiency and variable capacity. In this study performance of a VCCSC cycle is examined through computer simulation. In the simulation heat exchangers were modelled by specifying UA or effectiveness values while the compressor performance was specified by an isentropic efficiency. Aqua/ammonia solution was chosen as the working fluid which can be used in the high temperature range. The results show that there exists an optimum operation condition which is dependent upon the temperatures of the external heat transfer fluids(HTFs). Besides the HTF\`s temperature, the maximum system pressure and the size of the solution heat exchanger are shown to have an influence on the optimum operation condition. Finally, as compared to a simple vapor compression heat pump with HFC134a, the COP of the VCCSC is shown to be 2∼22% higher.

  • PDF

Performance Characteristics on the Mixed Flow Type Absorption Chiller-Heater (혼합흐름 사이클용 흡수식 냉온수기의 성능특성)

  • Yoon, J.I.;Shin, G.B.;Park, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.351-360
    • /
    • 1996
  • This study focuses on the development and evaluation of the high efficiency absorption chiller-heater, which can be applied to a direct gas fired, double effect system with 40RT (508,000kJ) cooling capacity. The performance of the absorption chiller-heater is investigated through cycle simulation and experiment to obtain the system characteristics with the inlet tenperature of cooling, chilled water, and gas input flow rate. The efficiency of the different cycles has been studied and the simulation and experiment results show that higher coefficient of performance could be obtained for mixed flow cycle. The five percent difference was obtained from the comparison between experimental and cycle simulation results. As a result of this study, the optimum designs were determined based on the operating conditions and the coefficient of performance.

  • PDF

A New Energy Saving Process for Air Dehumidification : Analysis and Applications (공기제습의 새로운 에너지 절약과정의 해석과 응용)

  • 대한설비공학회
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.3
    • /
    • pp.254-263
    • /
    • 1986
  • 공기의 제습 운전에 많은 에너지가 소요되므로 고효율과 경비절감이 가능한 새로운 기술의 연구가 필요하게 되었다. 이 글에서는 공기-공기 열점프 시스템과 흡수시스템을 새로이 제안한 MIDA 과정과 비교한다. LiCl 수용액을 사용한 흡수식 제습과 열펌프 사이클을 조합한 MIDA시스템으로 공기온도가 일정하거나 상승하게 되었다. 열펌프사이클로서 열을 흡수기에서 진공으로 작동되는 용액 재생기로 전달한다.

  • PDF

A Numerical Simulation of Air-Cooled Ammonia/Water GAX Absorption Cooling Cycle (공냉형 암모니아/물 GAX 흡수식 냉동 사이클의 수치 해석)

  • Jeong, S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.488-500
    • /
    • 1995
  • An air-cooled ammonia/water GAX(Generator-Absorber heat eXchange) absorption cooling cycle is proposed and its performance is numerically evaluated. It is shown that the performance of the system is greatly dependent on the quality of the refrigerant leaving the evaporator. For any refrigerant concentration in the investigated range(99.1~99.9% ammonia), the cycle COP(coefficient of performance) reaches the highest value, when some amount(about 7%) of refrigerant evaporates in the refrigerant heat exchanger. Among temperature differences in various heat exchangers, the temperature difference between GAX-absorber and the GAX-generator shows the greatest effect on the system performance, whereas pressure losses cause no significant decrease in COP. The system COP increases almost linearly with increasing evaporator temperature, decreasing absorber temperature or decreasing condenser temperature. If both absorber and condenser temperature increase simultaneously, the decrease in the COP becomes larger.

  • PDF