• Title/Summary/Keyword: 휴대폰 전자파

Search Result 83, Processing Time 0.025 seconds

FDTD Modeling using 3D CAD File of Hand-Held Mobile Phone (휴대폰의 3차원 CAD 파일을 이용한 FDTD 모델링)

  • 홍수원;이재용;김기회;오학태;박천석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.437-444
    • /
    • 2000
  • In this paper, we propose a method that directly converts 3D CAD files for handheld phones designed by a commercial CAD S/W, PATRAN, to FDTD modeling with 1mm resolution. To qualify the accuracy of this method, we compared the calculation of radiation pattern using 3D transient far zone transformation with the measured results by gain comparison method in anechoic chamber and the difference is less than 0.5 dB. The calculation of magnetic field distributions on the front of handheld phones has been done to find a factor contributes to SAR. The result showed up the H-field in the width direction of the phone gives more dominant effect than the field in the length or inside to the front direction.

  • PDF

FDTD Calculation for SAR Induced in a Head Model by the Electromagnetic Fields Irradiated from a Cellular Phone (휴대폰 전자파에 노출된 頭部에 흡수되는 SAR의 FDTD에 의한 해석)

  • 이윤경;임현준;우종우;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • The near field radiated from the monopole antenna of the cellular phone was calculated by using the modified finite difference time domain algorithm derived from the integral form of Maxwell's equations. Substituting the near field value into the differential form of Maxwell's equations, SAR's distribution in the human head was obtained. The human head was simulated by a model of 800,000 block cells with dielectric constant and conductivity. The cell size was taken to be 0.5 cm. the transmitted power of the cellular phone was assumed to be 0.6 watts at the frequency of 833 MHz. The distance between the head and the cellular phone was 2.0 cm, the maximum SAR induced in the human head was about 1.5 W/kg and was below the IEEE's upper safety limit of 1.6 W/kg.

  • PDF

An Applicable Method of an Electromagnetic Wave Absorber for SAR Reduction in the Human Head Exposed to Electromagnetic Fields Radiated by a Cellular Phone (휴대폰 전자파에 노출된 두부내 SAR 저감을 위한 전자파 흡수체 적용 방법 연구)

  • 이윤경;백락준;홍진옥;육재림;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.884-890
    • /
    • 2003
  • In order to reduce the specific absorption rate(SAR) in a human head exposed to electromagnetic fields radiated by a cellular phone, we have analyzed an electromagnetic wave absorber attached to the handset. A manufactured electromagnetic wave absorber was composed of Mn - Zn, which had complex relative permittivity of 7.30-j0.05 and permeability of 2.20-i1.55. The SAR value from the electromagnetic wave absorber attachment was calculated by using the nonuniform finite difference time domain(FDTD) algorithm and measured by phantom model at 835 MHz. The SAR reduction due to the electromagnetic wave absorber are about 18 % at 835 MHz. The V.S.W.R and radiation pattern of antenna are good agreement with the normal antenna. The gain reduction due to the electromagnetic wave absorber are only 0.3 dB at 835 MHz. But the sensitivity of cellular phone generally improves about 1 dB.

Influences of Mobile Phone Electromagnetic Wave on Human Body According to Holding Method by the Hand and Wearing Accessories (손과 액세서리에 의한 휴대폰 전자파의 인체 노출 특성)

  • Choi Myung-Sun;Jang Young-Ho;Gimm Youn-Myoung;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.652-660
    • /
    • 2005
  • In this paper, we compared the spatial peak SAR values measured with and without holding the hand-held phones to check the present recommended spatial peak SAR. To better understand the analysis of the SAR effect values, SAR is measured with hand phantoms, made and recommended for the use of Bar-type and Folder-type hand-held phones. The measured results have shown that use of the hand considerably reduces the spatial peak SAR value in a head phantom. We compared the spatial peak SAR values measured with and without accessories. To better understand the analysis of the effects of SAR values with accessories, SAR is measured with accessories composed of three kinds of earrings and glasses. The measured results proved in study that the spatial peak SAR value in a head phantom is not affected by the earrings but by the glasses. The glasses considerably increases the spatial peak SAR value in a head phantom while using Bar-type phones, although the effects are modest with Folder-type phones.