• Title/Summary/Keyword: 휨.압축 강도

Search Result 717, Processing Time 0.025 seconds

A Study on Bending, Compressive Strength of Mortar According to Temperature and Heating Time Change using Oyster Shell as Aggregate (굴 패각을 골재로 사용한 모르타르의 온도별 가열 시간에 따른 휨·압축 강도에 관한 연구)

  • You, Nam-Gyu;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.131-132
    • /
    • 2017
  • As the building is becomes bigger and larger, it can lead to big damage in case of fire. Also, tunnel, machine room and underground joint are spaces that can cause high temperature fire above 1,350℃ in case of fire. Therefore, a refractory material is need that can be withstand in high temperatures for long time. One side, the composition of oyster shell is CaCO3 of 90% or more. It is expected that it will be possible to use it as a high calcium natural material which is the material of the refractory board. According to, Study on bending, compressive strength of mortar according to temperature and heating time change using oyster shell as aggregate the most commonly occurring particle sizes form 2.5mm to 5mm.

  • PDF

A study on bending, Compressive Strength of Mortar According to Temperature and Heating Time Change using Classified Oyster shell as Aggregate (분급한 굴 패각을 골재로 사용한 모르타르의 가열 시간에 따른 휨·압축 강도에 관한 연구)

  • You, Nam-Gyu;Hong, Sang-Hun;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.122-123
    • /
    • 2017
  • As the building is becomes bigger and larger, it can lead to big damage in case of fire. Also, tunnel, machine room and underground joint are spaces that can cause high temperature fire above 1,350℃ in case of fire. Therefore, a refractory material is need that can be withstand in high temperatures for long time. One side, the composition of oyster shell is CaCO3 of 90% or more. It is expected that it will be possible to use it as a high calcium natural material which is the material of the refractory board. According to, Study on bending, compressive strength of mortar according to temperature and heating time change using classified oyster shell as aggregate.

  • PDF

The Effects of Reinforcing of Steel Fiber on the Strength Properties of the High-Strength Concrete (강섬유의 보강이 고강도 콘크리트의 강도 특성에 미치는 영향)

  • 구봉근;정경섭;김태봉
    • Magazine of the Korea Concrete Institute
    • /
    • v.4 no.2
    • /
    • pp.93-101
    • /
    • 1992
  • 강섬유를 혼입한 고강도 콘크리트의 강도 특성에 관한 연구를 수행하였다. 이를 위하여 고성능 감수제를 이용하여 제조한 고강도 콘크리트에 강섬유를 0, 0.5, 1.0, 1.5%로 변화시키면서 실험을 실시하였고, 또한 강섬유의 길이와 휨 시험편의 크기에 따른 강도의 변화에 대하여도 연구하였다. 연구결과 강섬유 보강 고강도 콘크리트의 압축강도는 강섬유의 혼입률에 따라 크게 영향을 받지 않으나, 할열인장강도와 휨강도는 강섬유 혼입률과 길이에 따라 크게 증가하였고, 특히 최대하중을 지나서도 응력의 감소가 작아 연성이 크게 증가하는 것으로 나타났다.

The Effects of Mixture Rate and Aspect Ratio of Steel Fiber on Mechanical Properties of Ultra High Performance Concrete (강섬유 혼입율 및 형상비가 초고강도 콘크리트의 역학적 성질에 미치는 영향)

  • Choi, Jung-Gu;Lee, Gun-Cheol;Koh, Kyung-Taek
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • Ultra high performance concrete is inevitably used in case of skyscraper and super long span bridge. In general, the flexural and the tensile strengths of concrete are lower than the compressive strength, so brittle cracks occur and energy absorption ability is lowered. In order to solve this problem, this study is intended to examine the effect of the steel fiber volume fraction and aspect ratio on the mechanical properties of ultra high performance concrete. In series I, 20-mm straight steel fiber was added with a volume fraction of 0, 1.0, 1.3, 1.5 and 2.0%. In series II, 16-mm steel fiber was added with a volume fraction of 0, 1, and 1.5%, and then mechanical properties were examined according to aspect ratio. In the results of experiment, a difference in compressive strength was insignificant. However, regarding the flexural strength and tensile strength, as the volume fraction and aspect ratio increased, flexural performance and tensile performance improved.

In-plane buckling strength of fixed parabolic arch (고정지점 포물선 아치의 면내 좌굴강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Cho, Yong Rae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • If arches are braced by lateral restraints, the ultimate strength of arches is determined by in-plane buckling and plastic bending collapse. This paper is conducted to investigate the in-plane nonlinear elastic and inelastic buckling behavior and the strength of fixed parabolic arches in uniform compresion, as well as to study arch behaviors against non-uniform in-plane compression and bending. As shown by the results, the limit slenderness ratio is suggested to classify the bucklingmode. Buckling strength of fixed parabolic arches under uniform compresion are evaluated using buckling curve for a straight column. Finally, an interaction e quation for arches under combined axial compresion and bending action is proposed.

An Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash.Cement Composites (실리카흄 및 플라이애쉬.시멘트 복합체의 역학적 특성에 관한 실험적 연구)

  • 박승범;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.158-170
    • /
    • 1994
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber rekforced silica fume . cement composites and light weight fly ash . cement composites are presented in this paper. 11s the test results show, the flexural strength, fracture toughness and ductility of CF reinforced silica fume . cement composites were remarkably increased by the increase of carbon fiber contents. And the workability of the fly ash . cement composites were improved, but the compressive and flexural strength and bulk specific gravity of them are decreased by increasing the ratio of fly ash to cement. And the compressive and flexural strength of the fly ash cement composites by cured under the hot water were improved than those by mositure cured. Also, the manufacturing process technology of lightweight fly ash . cement composites in replacement of general autoclaved lightweight concrete was developed and its optimum mix proportions were proposed.

A study on the flexural toughness evaluation method of steel fiber reinforced shotcrete (강섬유 보강 숏크리트의 휨인성 평가 방법 연구)

  • 김재동;김덕영
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.196-210
    • /
    • 2000
  • This study was aimed to verify the validity of the flexural toughness evaluation method of steel fiber reinforced shotcrete(SFRS) currently being adopted by Korea Highway Corporation(KHC). Total 33 beam specimens using six different kinds of steel fiber products were prepared at tunnel construction sites and flexural toughness tests were executed at laboratory. Equivalent flexural strengths and toughness quotients were evaluated from the tests following the KHC guide iud these were compared with the quality grades determined under the guides proposed by ASTM, ITA and EFNARC. To discard the disadvantage that the toughness quotient could be influenced by flexural strength when following the KHC guide, a modification substituting the designed flexural strength for the flexural strength in the toughness quotient calculation formula was proposed to rate the quality of SFRS more adequately.

  • PDF

Strain-Based Shear Strength Model for Prestressed Beams (프리스트레스트 콘크리트 보를 위한 변형률 기반 전단강도 모델)

  • Kang, Soon-Pil;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.75-84
    • /
    • 2009
  • An analytical model for predicting the shear strength of prestressed concrete beams without shear reinforcement was developed, on the basis of the existing strain-based shear strength model. It was assumed that the compression zone of intact concrete in the cross-section primarily resisted the shear forces rather than the tension zone. The shear capacity of concrete was defined based on the material failure criteria of concrete. The shear capacity of the compression zone was evaluated along the inclined failure surface, considering the interaction with the compressive normal stress. Since the distribution of the normal stress varies with the flexural deformation of the beam, the shear capacity was defined as a function of the flexural deformation. The shear strength of a beam was determined at the intersection of the shear capacity curve and the shear demand curve. The result of the comparisons to existing test results showed that the proposed model accurately predicted the shear strength of the test specimens.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.

Evaluation on Flexural Capacity of Reinforced Concrete Beams with Ultra-High Performance Cementitious Composites (UHPCC를 사용한 철근 콘크리트 보의 휨강도 평가)

  • Kang, Su-Tae;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.81-90
    • /
    • 2008
  • This paper concerns the flexural capacity of reinforced concrete beams with ultra-high performance cementitious composites(UHPCC). It was investigated if the existing equations to estimate the flexural capacity of reinforced fiberous concrete beams are applicable with the experiments including lightly reinforced concrete beams. The reinforcing effect when the steel fiber reinforced concrete was used in beams was also estimated. The results showed that the equation to predict the flexural capacity of reinforced steel fiber concrete by ACI 544 committee didn't have a good agreement with the test results and underestimated the flexural capacity in especially lightly reinforced beams with under 1.5% reinforcement ratio. the enhancement of flexural capacity was quite considerable in lightly reinforced beams when the steel fiber reinforced concrete was used. A equation to predict the reinforcing effect of steel fiber in reinforced steel fiber beams was developed. the equation was proposed as a function of both the characteristics of steel fiber and reinforcement ratio.