• Title/Summary/Keyword: 휨 파괴

Search Result 698, Processing Time 0.023 seconds

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.

Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads (지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.1-10
    • /
    • 2006
  • Reinforced concrete bridge columns with relatively small aspect ratio show flexure-shear behavior, which is flexural behavior at initial and medium displacement stages and shear failure at final stage. Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior (솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향)

  • Gyu-Pil Lee;Do-Young Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.193-200
    • /
    • 2023
  • This paper investigates the effect of directional alignment of steel fibers using an electromagnetic field on the flexural fracture behavior of steel fiber reinforced concrete. A specially designed and manufactured solenoid, capable of aligning steel fibers in the longitudinal direction of the beam specimen, was employed for this purpose. Beam specimens with a design strength of 30 MPa were produced, and failure tests were conducted on specimens exposed to electromagnetic fields and those without exposure. Experimental variables included the mixing ratio and aspect ratio of steel fibers. The results of the experiments revealed a slight increase in flexural strength and crack mouth opening displacement at the maximum load for specimens exposed to the electromagnetic field. Notably, a significant enhancement in fracture energy was observed.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Effects of Axiral Restraint on flexural and Shear Behavior in High Strength Reinforced Concrete Beams (고강도 철근 코크리트 휨 부재의 휨.전단거동에 미치는 축방향 구속의 영향)

  • 양은익;고훈범;김진근;이성태
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.6
    • /
    • pp.207-216
    • /
    • 1997
  • 본연구는 축방향 변형 구속이 고강도 콘크리트 휨부재의 휨 전단거동에 미치는 영향을 조사하기 위한 것으로, 수화열과 건조수축에 기인하는 축방향 변형과 재하에 의한 축방향 변형을 구속한 부재 및 무구속 부재에 대하여 휨파괴와 전단파괴 실험을 실시하였다. 타설 직후부터 축변형을 구속한 실험체의 재하시 강성은 재하전의 구속으로 발생한 관통균열의 영향을 받아 무구속 실험체의 강성보다 낮지만, 재하시의 축변형 구속에 따른 압축구속력의 상승으로 인하여 강성의 크기는 역전되었다 축변형이 완전히 구속된 휨부재의 휨강도는 무구속 부재보다 20%이상 상승하지만 변형능력은 감소하는 것으로 나타났으며, 재하전의 축변형 구속에 의한 관통균열(균열폭 0.1mm 미만)은 부재의 전단내력 및 전단균열 진전 형상에 영향을 미치지 않았다.

Flexural Behavior of Reinforced Concrete Beams Considering Steel Corrosion (철근의 부식을 고려한 RC보의 휨파괴 거동)

  • Eo, Seok-Hong;Lee, Chang-Hyun;Lee, Sang-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3251-3259
    • /
    • 2014
  • This paper presents experimental and analytical research results to predict nonlinear flexural behavior of corroded reinforced concrete beams. For this purpose, a series of test and an analytical simulation using the Maaddawy's model were carried. Test specimens of total 12 RC beams were placed in accelerated corrosion status using salt water spray test chamber for 5 months and 10 months, after they were preloaded up to 30% and 60% of the maximum load corresponding to nominal flexural strength. The test results showed that flexural strength and ductility decreased to 5.4% and 43% at the most respectively due to breakdown of bond at the steel-concrete interface. Comparative study between the analytical predictions and the experimental results showed that the Maaddawy's model can be applied to predict a real corroded RC flexural members.

Failure and Flexural Behavior of Reinforced Concrete Beams Strengthened with CFRP Strips (탄소섬유판(CFRP Strip)으로 보강된 철근콘크리트 부재의 파괴거동 및 휨 거동 특성)

  • Lim, Dong Hwan;Park, Sung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.289-295
    • /
    • 2008
  • The purpose of this study was to examine the flexural behavior of reinforced concrete beams strengthened with CFRP strips. A total of 12 rectangular beams were tested. Test variables in this study were the shapes, bonded length and the number of longitudinal layers of CFRP strips. From the experimental study, flexural capacity of the beams strengthened with CFRP strips significantly increased compared to the reinforced concrete beam without a CFRP strip. Maximum increase of ultimate strength was found about 120% more than the control beam. In this test, most of the strengthened beams failed suddenly due to the debonding of CFRP strips. It is also observed that the debonding of the strip was initiated in the flexural zone of the beam and propagated rapidly to the end of the beam. The ultimate tensile strains of CFRP strips in this test were occurred at the level of 36% of rupture tensile strength of the CFRP strip, and an analytical approach to compute the flexural strength of reinforced beams strengthened with CFRP strips based on the effective stresses was conducted.

Flexural Behavior of RC Beam Made of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 콘크리트로 제작된 RC 보의 휨 거동)

  • Han, Sang-Hoon;Jeon, Byeong-Gu;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • This paper presents experimental and analytical results on flexural behavior of flexural members made of SIFCON. Twelve SIFCON beams were subjected to bending tests and their flexural behavior was evaluated. Experimental variables included steel fiber type, presence of tensile reinforcement, and height of section. The specimens using Type-B steel fibers, which had better pullout resistance than Type-A steel fibers, showed flexural failure behavior without shear failure. The aspect ratio of steel fiber had a great influence on the behavior of SIFCON beams without tensile steel, however the effect on the behavior of SIFCON beams was negligible. In addition, the flexural strength equation for SIFCON was proposed in the study. The mean and standard deviation of the ratios of the predicted value to the experimental value are 1.02 and 0.04, respectively. Therefore, the proposed flexural strength equation can be useful for the design and performance evaluation of SIFCON beam.

Analysis of the Flexural Strength of Reinforced Concrete Beams Strengthened with Prestressed Carbon Fiber-Reinforced Polymer Plates (CFRP판으로 프리스트레싱 보강된 RC 보의 휨강도 해석)

  • Woo, Sang-Kyun;Hong, Ki-Nam;Han, Sang-Hoon;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.181-192
    • /
    • 2007
  • The purpose of this study is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, and finally suggest the evaluation equations of flexural capacity of RC beams with the aim of application of prestressed CFRP strengthening. The experimental parameters are compressive strength, reinforcement ratio, prestressing level and strengthening methods. The non-prestressed specimens failed on account of separation of the plates from the beams due to premature de-bonding, while most of the prestressed specimens failed due to CFRP plate fracture. The evaluation equations of flexural capacity of RC beams is suggested and these equations have a good reliability in predicting flexural strength of RC beams.

Demand Strength Spectrums of Low-Rise Reinforced Concrete Buildings Consisted of Extremely Brittle, Shear and Flexural Failure Systems (극취성·전단·휨파괴형 수평저항시스템으로 구성된 저층 철근콘크리트 건물의 요구 내력 스펙트럼)

  • Lee, Kang-Seok;Kim, Jeong-Hee;Oh, Jae-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.529-537
    • /
    • 2007
  • The purpose of this study is to discuss how strength and ductility of each system in low-rise reinforced concrete buildings composed of extremely brittle, shear and flexural failure lateral-load resisting systems have influence on seismic capacities of the overall system, which is based on nonlinear seismic response analyses of single-degree-of-freedom structural systems. In order to simulate the triple lateral-load resisting system, structures are idealized as a parallel combination of two modified origin-oriented hysteretic models and a degrading trilinear hysteretic model that fail primarily in extremely brittle, shear and flexure, respectively. Stiffness properties of three models are varied in terms of story shear coefficients, and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of demand strengths of the triple system for various levels of ductility factors are finally derived for practical purposes. The result indicates that demand strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete buildings having the triple lateral-load resisting system.