• Title/Summary/Keyword: 휨설계

Search Result 913, Processing Time 0.025 seconds

A Study on the Design Bending Moments of Long Span Decks with KL-510 Load (KL-510 하중을 적용한 장지간 바닥판의 설계휨모멘트에 관한 연구)

  • Chung, Chulhun;Lee, Hanjoo;Joo, Sanghoon;An, Hohyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.375-384
    • /
    • 2016
  • In the current Korea highway bridge design code (KHBDC), the criteria of concrete bridge decks are mainly based on short span decks of steel plate girder bridge, there are very little the specific criteria of long span decks in the twin steel plate girder bridge. Therefore, to put more rational and practical design criteria of the long span decks on the code, the complements of the related criteria are required in the current design code. This paper proposed the design bending moments of decks with 6.0~12.0m span for KL-510 load in direction to bridge (longitudinal direction) and perpendicular direction to bridge (transverse direction). The effects of orthotropic concrete decks, stiffness of steel girders and multiple lane loading factors (MLLF) were reflected in the design bending moments. The proposed design bending moments were compared to the design bending moments with DB-24 load.

Prediction of Bending Strength of Concrete Beams with Compressive Strength of 80 MPa (80 MPa의 압축강도를 갖는 콘크리트 보의 휨강도 예측)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.335-343
    • /
    • 2017
  • This paper aims at investigating the bending strength of high-strength concrete beams with compressive strength of 80 MPa. The experimental parameters included nominal yielding strength of rebar with 400 and 600 MPa, rebar ratio ranging from 0.98 to 1.97%, and shear span-effective depth ratios (a/d) of 6.0 and 4.8. Experimental results were discussed regarding load-deflection relationship, ductility, bending strength, and prediction of bending strength of beams. Test results indicate that the use of high-strength rebar increased bending strength but decreased ductility. As span-effective depth ratio increased, the ductility of test beams decreased. In addition, test results of bending strength were compared with predictions from the current KCI code, Eurocode 2 and Korean Highway Design Specification (KHDC). The design code predictions for bending strength underestimated the experimental results. Therefore, the current design code predictions for bending strength of high-strength concrete beams would provide conservative design. Predictions of bending strength from KCI code using strength reduction factors and those from Eurocode 2 as well as KHDC using material factors were similar each other.

Flexural Strength of Composite HSB Girders in Positive Moment (HSB 강합성거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.389-398
    • /
    • 2010
  • The flexural strength of composite HSB I-girders under a positive moment was investigated using the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specifications to such girders. A total of 2,391 composite I-girder sections that satisfied the section proportion limits of the AASHTO LRFD specifications was generated by the random sampling technique to consider a wide range of section properties. The flexural capacities of the sections were calculated inthe nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels were modeled as an elasto-plastic strain-hardening material, and the concrete, as a CEB-FIP model. The effects of the ductility ratio and the compressive strength of the concrete slab on the flexural strength of the composite girders made of HSB and SM520-TMC steels were analyzed. The numerical results indicated that the current AASHTO LRFD equation can be used to calculate the flexural strength of composite girders made of HSB600 steel. In contrast, the current AASHTO LRFD equation was found to be non-conservative in its prediction of the flexural strength of composite HSB800 girders. Based on the numerical results of this study for 2,391 girders, a new design equation for the flexural strength of composite HSB800 girders in a positive moment was proposed.

Design of Economical Steel Ratio in RC Flexural Members (RC 휨부재의 경제적 철근비 설계)

  • Jeong, Je Pyong;Lee, Chang Kee;Ryu, Heui Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.93-99
    • /
    • 2015
  • This paper is on a practical method for determination of the economical steel ratio in RC flexural members with an equal safety factor. The cost functions of each material and labor are considered to construct the cost function. Then, an equation for determination of the economical flexure steel ratio with the lowest construction cost were proposed. It was found that a relevant steel ratio is recommended to be 0.65~1.0% for designing singly reinforced rectangular beam.

The Effect of Variation of Design Parameters on the Flexural Behavior of UHPFRC Beams (UHPFRC 보 휨 거동에 대한 설계변수 변동의 영향)

  • Yang, In-Hwan;Kim, Kyung-Chul;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.138-145
    • /
    • 2018
  • This paper studies the bending behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams focused on the effect of variation in major material design parameters such as tensile strength, elastic modulus of UHPFRC, and rebar ratio. Analytical results show that the variation in the range of ${\pm}20%$ in the tensile strength of UHPFRC causes the significant difference in ${\pm}8{\sim}9%$ of bending strength compared to the reference condition. The variation of elastic modulus in UHPFRC rarely causes the effect on the bending strength of the UHPFRC section, whereas causes the difference in the slopes of moment-curvature curves, indicating different bending stiffness of UHPFRC sections. For the rebar with yield strength of 400MPa, the bending strength of SC120f is increased by 30, 67, and 99% when the rebar ratio is 1.0, 1.5, and 20%, respectively, compared to the rebar ratio of 0.5%. Therefore, it is observed that the variation of rebar ratio significantly affects the difference in bending strength of UHPFRC beams. However, as the compressive strength of UHPFRC becomes greater, the effect of rebar ratio on the increase of bending strength is decreased.

강성비의 변화에 따른 Shell구조의 역학적 거동

  • 도진수
    • Computational Structural Engineering
    • /
    • v.7 no.2
    • /
    • pp.11-15
    • /
    • 1994
  • 본 고에서는 축대칭회전 Shell을 해석모델로 선정하여 주로 Shell의 휨 강성이 구조체의 거동에 미치는 영향에 대하여 검토하였다. 어떠한 구조형식이든 외력의 작용하에서 발생되는 응력이 축방향력 뿐이라는 것은 상당히 합리적이고 역학적으로도 명쾌한 동시에, 실제 설계상 이상적인 판단기준을 부여하지만, 실제로는 필히 휨상태를 수반하게 된다. 이러한 휨상태는 구성요소의 휨강성에 크게 의존하고 있고, 구조체에 어느정도의 휨강성을 부여하므로써 작용하중에 대한 저항능력의 증가, 변형 및 응력의 저감에 효과적이라는 것을 알 수 있다. 본 고에서는 등방성 Shell에 대한 선형 해석결과만을 게재하였으나, 이러한 성상은 여러가지 영향인자(지지조건, 하중상태 등)에 따라 아주 상이하게 나타나기 때문에 세심한 고찰이 필요하다고 할 수 있다.

  • PDF

Review of Steel ratio Specifications in Korean Highway Bridge Design Code (Limit States Design) for the Design of RC Flexural Members (철근콘크리트 휨부재 설계를 위한 도로교설계기준(한계상태설계법)의 철근비 규정 검토)

  • Lee, Ki-Yeol;Kim, Woo;Lee, Jun-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.277-287
    • /
    • 2017
  • This paper describes the specifications on balanced steel ratio and maximum reinforcement for the design of RC flexural members by the Korean Highway Bridge Design Code based on limit states design. The Korean Highway Bridge Design Code (Limit States Design) is not provide for the balanced steel ratio specification for the calculation of required steel area of RC flexural members design. The maximum steel area limited the depth of the neutral axis at the ultimate limit states after redistribution of the moment, and also recommended the maximum steel area should not exceed 4 percent of the cross sectional area. However, from the maximum neutral axis depth provisions should increase the cross section is calculated to be less the maximum reinforcement area, and according to the 4% of the cross sectional area of the concrete, the tensile strain of the reinforcement is calculated to be greater than double the yielding strain, so can not guarantee a ductile behavior. This study developed a balanced reinforcement ratio that is basis for the required reinforcement calculation for tension-controlled RC flexural members design in the ultimate limit states verification provisons and material properties and applied the ultimate strain of the concrete compressive strength with a simple formular to be applied to design practice induced. And assumed the minimum allowable tensile strain of reinforcement double the yielding strain, and applying correction coefficient up to the ratio of maximum neutral axis depth, proposed maximum steel ratio that can be applied irrespective of the reinforcement yield strength and concrete compressive strength.

Calculation for of Strength Reduction Factor for Concrete Beam reinforced with GFRP rebars (GFRP rebar로 보강된 콘크리트보의 휨 강도감소계수 보정식 제안)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kang, Tae-Sung;Kwon, Dong-Wook;Lee, Yong-Taek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.137-140
    • /
    • 2008
  • If the flexural member of concrete is designed using the FRP rebar, suddenly brittleness destruction resulted from the fracture of FRP rebar is generated in the extreme situation because of brittleness characteristics of FRP rebar and concrete when designed to be less than balanced reinforcement ratio, so it is recommended to design the flexural member of concrete to be more than balanced reinforcement ratio. In ACI 440.1R-06 proposes the different bending strength decrease coefficient according to destructive form of concrete flexural member using the FRP rebar. However, ACI 440.1R-06 applies the same strength decrease coeffient to all FRP rebars made of diverse materials. If the same strength decrease coefficient is applied to all FRP rebars, effect of increasing the reinforcement ratio and selection of FRP rebar will be considerably limited. In this regard, we are to propose the formula to calculate the bending strength decrease coefficient in consideration of change in characteristics of FRP rebar and L/D through the reliability analysis in this paper.

  • PDF

Structural Analysis of Robot Structure Handling Nuclear Fuel Assembly in Liquid Metal Reactor VesselII: Static Deflection Analysis (액체금속로 핵연료교환장치의 구조해석II : 정적 휨변형해석)

  • 권영주;김재희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.583-589
    • /
    • 1999
  • 본 논문에서는 MDO기법에 의한 핵연료교환장치의 구조해석 단계 중 핵연료교환장치의 휨 변형을 구하는 재료역학해석을 수행하였다. 이는 액체 금속로(LMR) 핵연료교환장치의 기본설계를 위하여 매우 중요하다. 해석대상 핵연료교환장치의 정적구조는 기 수행한 핵연료교환장치의 기구 동역 학 해석 결과를 활용하였다. 네 가지 핵연료교환동작에 대하여 핵연료 봉의 무게를 100㎏에서 500㎏까지 100㎏씩 증가시켜 휨 변형의 크기를 구하였다. 그 결과 회전 중심 축에서 가장 멀리 있는 핵연료 봉을 교환하는 핵연료교환동작에서 최대 휨 변형이 발생함이 밝혀졌다. 또한 이 최대 휨 변형이 발생하는 핵연료교환장치구조에 대하여 부재의 단면두께를 축소하면서, 또 단면형상을 여러 가지로 바꾸면서 휨 변형크기를 구하여 비교하였다. 비교결과 비교대상 단면형상 중에서 중공직사각형 단면이 최소 휨 변형이 발생하는 최적단면형상임이 밝혀졌다.

  • PDF

Estimation for Equivalent Flexural Stiffness of Innovative Prestressed Support(IPS) Wale (혁신적 프리스트레스트 가시설(IPS)의 띠장에 대한 등가 휨강성의 산정)

  • Kim, Sung Bo;Kim, Hun Kyom;Heo, In Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2009
  • The flexural-stiffness formula of the wale for the innovative prestressed support (IPS) system was precisely derived, and the equivalent beam stiffness was introduced for application in the actual design of the IPS wale. The cable tension forces of the IPS wale were calculated in both cases, and the axial-deformation effects were included and ignored, respectively. The central displacements of the 1-post, 2-post, 3-post, and 4-post IPS wales were calculated based on the principle of virtual work. The effects of the IPS wale length and cable inclination angle were also investigated using the derived central displacements. The simplified equivalent flexural stiffness of the IPS wale is presented herein for design purposes, and the validity of the proposed design formula was verified through its comparison with the FE and analysis solutions.