• Title/Summary/Keyword: 휨보강성능

Search Result 444, Processing Time 0.025 seconds

The Properties of Durability and Strength of Fiber-Reinforced Polymer-Modified Mortars Using Eco-Friendly UM Resin (친환경 UM수지를 사용한 섬유보강 폴리머 시멘트 모르타르의 내구성 및 강도 특성)

  • Kwon, Min-Ho;Seo, Hyun-Su;Lim, Jeong-Hee;Kim, Jin-Sup
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.313-320
    • /
    • 2013
  • In this study, performance of fiber-reinforced polymer-modified mortar was studied for the development of eco-friendly materials for high performance repair and reinforcement. The general cement mortar and eco-friendly UM resin was mixed with a certain percentage for increased durability. To increase the strength of the polymer-modified mortar, PVA fiber, steel fiber and hybrid fiber were added at a constant rate. Hybrid fiber is contains the same percentage of PVA fiber and steel fiber. In order to determine the strength properties of fiber-reinforced polymer-modified mortar, the compressive strength test, the splitting tensile strength test and the flexural strength test were performed. And, in order to determine the durability properties of fiber-reinforced polymer-modified mortar, water absorption test and chemical resistance test were performed. From the experimental results, polymer-modified mortar using UM resin was improved durability. And the tensile strength and flexural strength increased, which were the vulnerability of fiber reinforced polymer-modified mortar. From this study, fiber-reinforced polymer-modified mortar using eco-friendly UM resin can be used to repair and reinforcement for the external exposure of concrete structures to improve the durability.

A Study on the Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced UHPC and Inverted-T Steel Considering Compressive Strength Level (압축강도 수준을 고려한 강섬유 보강 UHPC와 역T형 강재 합성보의 휨거동 실험 연구)

  • Yoo, Sung-Won;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.677-685
    • /
    • 2015
  • In a will to subdue the brittleness as well as the low tensile and flexural strengths of ordinary concrete, researches are being actively watched worldwide on steel fiber-reinforced Ultra High Performance Concrete (UHPC) obtained by admixing steel fibers in ultra high strength concrete. For the purpose of maximizing advantage of UHPC, this study removes the upper flange of the steel girder to apply an inverted T-shape girder for the formation of the composite beam. This paper intends to evaluate the behavior of the shear connectors and the flexural characteristics of the composite beam made of the inverted T-shape girder and UHPC slab using 16 specimens considering the compressive strength of concrete, the mixing ratio of steel fiber, the spacing of shear connectors and the thickness of the slab as variables. In view of the test results, it seemed that the appropriate stud spacing should range between 100 mm and 2 or 4 times the thickness of the slab. Moreover, the relative displacement observed in the specimens showed that ductile behavior was secured to a certain extent with reference to the criteria for ductile behavior suggested in Eurocode-4. The specimens with large stud spacing exhibited larger values than given by the design formula and revealed that the shear connectors developed larger ultimate strength than predicted owing to the action of UHPC and steel after non-composite behavior. Besides, the specimens with narrow stud spacing failed suddenly through compression at the upper chord of UHPC before reaching the full capacity of the shear connectors.

Structural Behavior of the Reinforced Concrete Filled GFRP Tube (GFRP 보강 철근콘크리트 합성부재의 구조적 거동)

  • Lee, Seung-Sik;Joo, Hyung-Joong;Kang, In-Kyu;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.44-51
    • /
    • 2010
  • Recently, to solve the problems associated with the neutralization and corrosion of reinforced concrete compression members, the structural configurations such as CFFT (Concrete Filled GFRP Tube) and RCFFT (Reinforced Concrete Filled GFRR Tube) have been developed and applied to main members of civil engineering structure. These members can increase structural performance in terms of structural stability, ductility as well as chemical resistance compared with conventional concrete structural members. Many researches in numerous institutions to predict the load carrying capacity of the concrete compression member strengthened with FRP materials have been conducted and they have been suggested an equation for the prediction of the load carrying capacity of the members. Through the review of the research results, it was found that their results are similar each other. Moreover, it was also found that the results are not directly applicable to our specimens since the results are largely depended upon the member configurations. Also, since the accurate design criteria for the RC members strengthened with FRP such as RCFFT have not been established properly, relevant theoretical and experimental investigations must be conducted for the application to the practical structures. In this study, structural behavior of RCFFT was evaluated through compressive and quasi-static flexural tests in order to formulate design criteria for the structural design. In addition, the RCFFT members were also investigated to examine their confinement effect and the equations capable of estimating the compressive ultimate strength and flexural stiffness of the RCFFT members were proposed.

Evaluation of Load Capacity and Toughness of Porous Concrete Blocks Reinforced with GFRP Bars (GFRP 보강 다공성 콘크리트 블록의 내력 및 인성 평가)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.403-409
    • /
    • 2017
  • In this study, mix proportioning of porous concrete with compressive strength and porosity exceeding 3MPa and 30%, respectively, was examined and then load capacity and flexural toughness of the porous concrete block were evaluated according to the different arrangements of the GFRP bars. To achieve the designed requirements of porous concrete, it can be recommended that water-to-cement ratio and cement-to-coarse aggregate ratio are 25% and 20%, respectively, under the aggregate particle distribution of 15~20mm. The failure mode of porous concrete blocks reinforced with GFRP bars was governed by shear cracks. As a result, very few flexural resistance of the GFRP was expected. However, the enhanced shear strength of porous concrete due to the dowel action of the GFRP bars increased the load capacity and toughness of the blocks. The porous concrete blocks reinforced with one GFRP bar at each compressive and tensile regions had 2.1 times higher load capacity than the companion non-reinforced block and exhibited a high ductile behavior with the ultimate toughness index ($I_{30}$) of 43.4.

A Study on Out-of-Plane Flexural Behavior of the Structure with a Vertical Plane Connection between a Reinforced Concrete Wall and a Steel Plate Concrete Wall (철근 콘크리트 벽과 강판 콘크리트 벽이 수직으로 만나는 이질접합 구조물의 면외 휨 거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Hahm, Kyung Won;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2013
  • This paper describes the experimental study on the structural behavior of the vertical plane connection between a reinforced concrete wall and a steel plate concrete wall under out-of-plane flexural loads. The specimen was tested under a dynamic test with the use of cyclic loads. As a result of the test, ductile failure mode of vertical bars was shown under a push load and the failure load was more than that of the nominal strength of the specimen. However, the shear failure mode of the connection was confirmed in case of a pull test and thus demonstrates a need for a shear reinforcement.

A Study on the Flexural Behavior of Concrete Filled Steel Tube Girder in Parametrically Varied Filling and Composition (충전 및 합성조건 변화에 따른 콘크리트 충전강관 거더의 휨거동에 관한 연구)

  • Chin, Won Jong;Kang, Jae Yoon;Choi, Eun Suk;Lee, Jung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.109-118
    • /
    • 2009
  • A new bridge system described in this paper uses concrete-filled steel tube (CFT) girders as a replacement for conventional girders. Experimental investigations were carried out to comprehend the flexural behavior of CFT girder. Specimens were manufactured considering several parameters such as the strength of filling material, the eventual presence and number of inner shear connectors to evaluate the bending bearing capacity of CFT girder. The experimental investigation consisted of designing and constructing a test specimen and loading it to collapse in bending to check the applicability of the system. Test results showed that concrete filled steel tube girders have good ductility and maintain their strength up to the end of the loading. The stiffening effect of the ㄱ-shaped perfobond rib is determined to contribute relatively to the increase of the bending bearing capacity.

Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer (CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험)

  • Lim, Jong-Wook;Seo, Soo-yeon;Song, Se-Ki
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete with Steel Fiber Reinforced (강섬유가 혼입된 고유동 자기충전 콘크리트의 유동 및 강도 특성)

  • Choi, Yun-Wang;Choi, Wook;Jung, Jea-Gwone;An, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, the concrete, in which the steel fiber(SF) with different volume-surface ratios and lengths was intermixed in High flowing Self-Compacting Concrete(HSCC), was produced to compare with steel fiber reinforced concrete as a part of plan to improve the workability and the quality of steel fiber reinforced concrete. As the result of experiment, the flowing and passing characteristics of HSCC intermixed with SF was highly improved as there was no fiber ball phenomenon due to the effect of high flowability and the viscosity, and in the identical range of compressive strength, it showed the tendency that the splitting and flexural strength was increasing as the length was getting longer regardless of volume-surface ratio when compared with HSCC which was intermixed with SF. It is estimated that in case of application of HSCC intermixed with steel fiber to work sites, it would be possible to improve the workability and the quality which would be better than that of steel fiber reinforced concrete which has been used.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.

Seismic-performance Flexural Experiments for Real Scale Piers with Circular Cross-section Considering Aging Effects (노후도를 고려한 실크기 원형단면 교각의 내진성능 휨실험)

  • Lee, Seung-Geon;Lee, Soo-Hyung;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.131-142
    • /
    • 2021
  • For old piers constructed when seismic design code had not been developed, lap splices usually exist in plastic hinge region. Corrosion of rebars causes decreasement in cross-sectional area of rebar and deterioration of lap-splice behaviour, thereby reducing the seismic performance of the old piers. In this research, according to these characteristics of old piers, test specimens are designed and manufactured considering rebar corrosion, lap splice, seismic design details, and seismic reinforcement. These effects are investigated through experiments. As a result of these experiment, rebar corrosion as well as lap splice reduces displacement ductility. When seismic design details or steel-plate reinforcement are applied, sufficient displacement ductility is expressed. For non-seismically designed specimens, loosening of the lap splice of transverse rebars caused buckling of longitudinal rebars and crushing of core concrete in plastic hinge region . For seismically designed specimen, area-reducing and untying of transverse rebars due to corrosion of rebars caused buckling of longitudinal rebars and crushing of core concrete.