• Title/Summary/Keyword: 휘산량

Search Result 23, Processing Time 0.028 seconds

Ammonia Volatilization from Coated Urea in Paddy Soil of Transplanting Rice Culture (벼 이앙재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Yun, Eul-Soo;Park, Sung-Tae;Lee, Suk-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.321-327
    • /
    • 2005
  • Ammonia ($NH_3$) volatilization was measured from latex coated urea (LCU) and normal urea treated rice paddy under transplanting rice culture in Milyang in 2002 and 2003. The $NH_3$ volatilization from incubation experiment was significantly related with ammonium-N ($NH_4-N$) concentration and pH in the surface water. The correlation coefficients of $NH_3$ volatilization compared to the $NH_4-N$ and pH in surface water were significantly higher in urea than LCU. The $NH_3$ volatilization from both urea and LCU treatments was not increased in surface water of pH less than 8.0, while $NH_3$ volatilization increased significantly in the surface water of pH over 8.0. The results in the field experiment indicated that $NH_3$ volatilization after top-dressing of urea increased rapidly with increasing $NH_4-N$ concentration in soil and floodwater, and highest from 7 to 10 days after top-dressing. The amount of $NH_3$ volatilized from urea treatment was in the range of $4.9-8.4kg\;N\;ha^{-1}$. The variations of $NH_3$ volatilization in 2002 and 2003 were caused by changed N dynamics due to the different weather conditions such as rainfall and temperature. The amount of $NH_3$ volatilized from LCU treatment was significantly reduced compared to that of urea. The reason for the reduced $NH_3$ volatilization in LCU treatment would be due to the lower concentration of $NH_4-N$ in floodwater. The amount of $NH_3$ volatilized from LCU treated rice paddy was in the range of $1.2-1.8kg\;N\;ha^{-1}$, and the loss of N by ammonia volatilization was 2.0-2.3%. Loss of N by $NH_3$ volatilization with LCU treatment was reduced by 75-79% comparing to urea treatment.

Evaluation of Ammonia Emission from Arable Soil applied Liquid Manure and Compost (가축분 퇴.액비 시용에 따른 암모니아 휘산량 평가)

  • Lee, Yong-Bok;Yun, Hong-Bae;Lee, Youn;Kaown, Dug-In
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.329-338
    • /
    • 2009
  • Emission of ammonia to the atmosphere are considered a threat to the environment. The application of livestock manure and compost contributes significantly to the emission of ammonia from agriculture. The reduction in NH3 losses from field-applied manure and compost would be a good strategy to reduce national $NH_3$ emission. In this study, various application techniques of liquid manure and compost were compared to evaluate their potential for reducing $NH_3$ emission. In compost application, the reductions in $NH_3$ emission were 70 and 15% for immediately rotary after application (IRA) and rotary at 3-day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied in compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. Mean reductions in NH3 emission from application of liquid pig manure were 26 and 50% for rotary harrow after surface broadcast application in spring and fall, respectively, in comparison with surface broadcast application. Ammonia emission rate was decreased with increasing water content in soil due to dilution effect, but this reduction only was temporary up to 12 hours after application and cumulative $NH_3$ emission was increased with increasing water content in soil. However, the delay would be beneficial because it allows time for rotary hallow of the applied liquid pig manure. Therefor, ammonia emission can be reduced by immediately incorporation of liquid manure and compost after surface application.

  • PDF

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Studies on the Volatilization of Ammonia in Relation to the Amount of Nitrogen added (토양의 반응과 질소(窒素)의 시용량(施用量)에 따른 암모니아의 휘산(揮散))

  • Oh, Wang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.1
    • /
    • pp.7-11
    • /
    • 1980
  • In order to learn about the volatilization of ammonia in relation to the amont of nitrogenous fertilizer, a laboratory experiment incubated between $35-40^{\circ}C$ for seven days, applying with 3.75mg N, 7.5mg N, and 11.25mg N in urea form, had been carried out. The result obtained are as follows : 1. As the amont of urea increases, the volatilization of ammonia enhanced. The enhancement of the volatilization of ammonia showed a close relationship with the pH raise of soil which is resulted from the formation of ammonia in soil. 2. Over liming decreased the volatilization of ammonia depressing the hydrolysis of urea and the ammonification of soil nitrogen. This tendency was far more pronounced when the pH of soil exceed 8.0.

  • PDF

The Effect of Flooding Time on Ammonia Emission after Application of Liquid Pig Manure in Paddy Soil (돈분뇨 시용 후 담수시기가 암모니아 휘산에 미치는 영향)

  • Lee, Yong-Bok;Lee, Youn;Shin, Pyung-Gyun;Yun, Hong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.377-381
    • /
    • 2011
  • BACKGROUND: Ammonia emissions from field-applied livestock manure are considered a threat to the environment worldwide. In Korea, a large amount of liquid manure was applied in the rice field before rice transplanting in order to reduce chemical fertilizer use. This study was conducted to provide the optimal flooding time after liquid manure application in an attempt to minimize ammonia emission. METHODS AND RESULTS: Ammonia emission from paddy field applied with liquid pig manure following different flooding time was measured using the dynamic chamber method. The five treatments used were : application of liquid pig manure to paddy field in flooding condition (F0T); one day (F1T) and three days (F3T) after flooding; without flooding (NF), and flooding without the application of liquid pig manure (control). Among the treatment, the highest ammonia emission was observed in F0T. The cumulative ammonia emission of F1T and F3T for 12 days were very similar and were about 4.7 times less than that of the F0T treatment. CONCLUSIONS: Ammonia emission in paddy field could be significantly reduced by liquid pig manure application after flooding rather than application of liquid pig manure in flooding condition. Therefore, flooding after liquid pig manure application would provide much more nitrogen for rice growth due to the reduction of ammonia emission.

Use of Phosphate Coated Urea to Decrease Ammonia Volatilization Loss from Direct Seeded Rice Field at Early Stage (건답(乾畓) 직파(直播) 논에서 초기(初期)의 암모니아 휘산(揮散) 경감(輕減)을 위한 인산(燐酸) 입힌 요소(尿素)의 효과(效果))

  • Jung, Yeong-Sang;Ha, Sang-Keun;Cho, Byung-Ok;Lee, Ho-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.1
    • /
    • pp.8-14
    • /
    • 1996
  • Use of phosphate coated urea to decrease ammonia volatilization from directly seeded paddy under dryland condition at early stage was tested. Effect on urea hydrolysis was investigated through laboratory study comparing with use of thiourea, a urease inhibitor, under different water content. A field measurement of volitilized ammonia with phosphate-glycerol ammonia absorber was conducted for surface treated urea, phosphate coated urea, phosphate coated slow-release fertilizer and organic fertilizer. Through laboratory study, hydrolysis rate of phosphate coated urea at three days after treatment was lower than that of urea, however, the rate after one week was same. Thiourea addition retarted urea hydrolysis. By field measurement, ammonia volatilization was effectively reduced by use of phosphate coated urea.

  • PDF

Effect of Diazinon Application on Ammonia Volatilization in Submerged Incubation Soil (담수항온 처리토양에서 diazinon 처리가 암모니아 휘산에 미치는 영향)

  • Han, Kang-Wan;Cho, Jae-Young;You, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.328-333
    • /
    • 1997
  • A study was conducted to examine the effect of application of Diazinon at different rates in submerged soil under the application of different N fertilizers; urea, ammonium sulfate and organic fertilizer(fermented chicken dung-sawdust mixture). The levels of Diazinon application were equivalent to zero, 350 mg a. i./ha, 700 mg a. i./ha and 1050 mg a. i./ha. To 100 gr of air-dry soil, 10 mg of N, $P_2O_5$ and $K_2O$ and different levels of Diazinon were mixed thoroughly and the soil was submerged in 100 ml of distilled water. The submerged soil was incubated at $30^{\circ}C$ for 50 days. Volatilied ammonia was measured at every 10 days. The amount of ammonia volatilization was greatest in urea treated soil, followed by organic fertilizer and it was the least in ammonium sulfate treated soil. The application of Diazinon at 700 mg a. i./ha increased the volatilization of ammonia greatly in the urea treated soil. Under other fertilizers, the effect of Diazinon application was not remarkable. The increase in the soil pH during the incubation period under different fertilizer treatments tended to increase ammonia volatilization.

  • PDF

Factors Controlling the Losses of Urea through Ammonia Volatilization (암모니아 휘산에 의한 요소비료의 손실에 미치는 요인)

  • Kim, Su-Jung;Yang, Jae E.;Cho, Byong-Ok;Kim, Jeong-Je;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.77-82
    • /
    • 2007
  • Volatilization of ammonia from N fertilizer is the major mechanism of N losses that occur naturally in all soils and is influenced by numerous soils, environmental and N fertilizer management factors. Vegetables are often damaged by $NH_3$ gas volatilized from the high rates of N fertilizer. We determined the rate of $NH_3$ volatilization from urea applied to surface of the alluvial soil (coarse silty, mixed, mesic family of Dystric Fluventic Eutrochrepts, Ihyeon series) as affected by fertilizer management factors such as rate of urea application, irrigation schedule and temperature. The $NH_3$ volatilization was triggered about 3 d after urea application and reached at maximum level in general within 15 days. Cumulative amounts of 3.0, 4.4, and 8.0 kg of $NH_3$ N after 17 d were volatilized at application rates of 200, 400, and $600kg\;N\;ha^{-1}$, respectively, which were equivalent to the N losses of 15.0, 10.9, and 13.0% of N applied. Masses of N volatilization were 5, 21, 75 and $87kg\;NH_3\;N\;ha^{-1}$ at 5, 8, 22, and 28, respectively. Total amounts of 21.3, 21.2, and $16.6kg\;N\;ha^{-1}$ were volatilized at control, 5 and 10 mm water irrigation before fertilization, respectively. However, those at 5 mm irrigation after fertilization were only $10.44kg\;N\;ha^{-1}$. Results showed that urea loss can be avoided by incorporating with the recommended level, applying when temperatures are low or irrigating immediately to carry the urea into soil.

Ammonia Volatilization from Coated Urea in Paddy Soil of Direct Seeding Rice Culture (벼 건답직파재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Jeon, Weon-Tae;Son, Il-Soo;Park, Sung-Tae;Lee, Suk-Soon;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.328-333
    • /
    • 2005
  • Ammonia volatilization is the major form of nitrogen (N) loss from flooded paddy soils and causes low N use efficiency. The effects of controlled release fertilizer (latex coated urea complex fertilizer, LCU) on reducing N loss by ammonia volatilization was measured comparing with urea in rice culture system of direct seeding on dry soil. In the treatment of urea, $NH_4-N$ concentration in surface water after flooding increased rapidly up to $8-10mg\;L^{-1}$ as affected by topdressing, while in the LCU treatment $NH_4-N$ concentration in surface water was less than $1mg\;L^{-1}$ during rice growing season. Relation of $NH_4-N$ concentration in surface water and ammonia volatilization was significant in urea treatment. The amount of ammonia volatilized from rice paddy of LCU treatment was $2.4-3.0kg\;ha^{-1}$ and the rate of ammonia volatilization from N fertilizer applied was only 2.0-2.3% compared with 5.9-7.9% in urea treatment. Therefore, N loss by ammonia volatilization could be reduced by 72-76% with by LCU compared with urea in rice culture system of direct seeding on dry soil.

Evaluation of Ammonia Emission from Liquid Pig Manure Composting System with Forced Aeration (돈분뇨의 호기적 액비화 과정에서 암모니아 휘산량 평가)

  • Kim, Tae-Young;Kim, Song-Yeob;Chang, Hong-Hee;Yun, Hong-Bae;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.366-368
    • /
    • 2013
  • BACKGROUND: Composting is the most frequently used waste management process for animal manure in Korea's livestock industry. In the composting process, a large amount of nitrogen (N) is volatilized to the atmosphere as amonia ($NH_3$). However, quantitative information of $NH_3$ emission from composting of liquid manure is required to obtain emission factors for management of livestock manure in Korea. METHODS AND RESULTS: To evaluate the $NH_3$ emission from composting of liquid manure affected by aeration, we conducted composting of liquid pig manure with three forced aeration systems. The aeration conditions were continuous (A60), cycle of 30 min aeration and 30 min pause (A30S30) and without aeration(A0). All treatments were aerated 12 hour per day with these aeration systems. The total ratio of $NH_3$ volatilization loss to total N content in liquid manure throughout composting period was estimated to 19.9% for A0 treatment, 25.9% for A30S30 treatment and 36.3% for A60 treatment. The A30S30 and A60 aeration systems increased $NH_3$ volatilization by 30.2 and 82.3% compared with systems without forced aeration. CONCLUSION(S): Ammonia emission during liquid pig manure composting was highly affected by forced aeration. The development of liquid pig manure composting systems with forced aeration would be considered both reducing ammonia emission and efficiency of composting.