• Title/Summary/Keyword: 휘발성 유기물질

Search Result 333, Processing Time 0.028 seconds

Improved Vapor Recognition in Electronic Nose (E-Nose) System by Using the Time-Profile of Sensor Array Response (센서 응답의 Time-Profile 을 이용한 전자 후각 (E-Nose) 시스템의 Vapor 인식 성능 향상)

  • Yoon Seok, Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.329-334
    • /
    • 2004
  • The electronic nose (E-nose) recently finds its applications in medical diagnosis, specifically on detection of diabetes, pulmonary or gastrointestinal problem, or infections by examining odors in the breath or tissues with its odor characterizing ability. The odor recognition performance of E-nose can be improved by manipulating the sensor array responses of vapors in time-profile forms. The different chemical interactions between the sensor materials and the volatile organic compounds (VOC's) leave unique marks in the signal profiles giving more information than collection of the conventional piecemal features, i.e., maximum sensitivity, signal slopes, rising time. In this study, to use them in vapor recognition task conveniently, a novel time-profile method was proposed, which is adopted from digital image pattern matching. The degrees of matching between 8 different vapors were evaluated by using the proposed method. The test vapors are measured by the silicon-based gas sensor array with 16 CB-polymer composites installed in membrane structure. The results by the proposed method showed clear discrimination of vapor species than by the conventional method.

Comparison of Instrument Characteristics on the Total Organic Carbon Analysis Method in Water Samples (수질분야 총유기탄소 분석방법에 따른 장비별 특성 비교)

  • Hye-Sung Kim;Eun-Tae Hwang;Chan-Geun Lee;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.353-362
    • /
    • 2023
  • TOC, which can measure more than 90% of organic substances, can be measured quickly and easily,replacing BOD and COD, which were indicators of organic pollutants. According to water quality pollution control standards, when measuring TOC, if the inorganic carbon ratio in the sample is over 50%, the NPOC (Non-Purgeable Organic Carbon) method should be used. If volatile organic compounds (VOCs) are present at a certain concentration, the TC-IC (subtracting inorganic carbon from total carbon) method should be used. To validate the limitations of these analytical conditions, experiments were conducted by varying the ratio of TOC to IC in purified water and measuring the concentration of TOC in test solutions. The results showed no significant difference between the TC-IC method and the NPOC method. When measuring samples with added VOC standard solutions, it was observed that the carbon loss due to purging was not significant when using the NPOC method. Therefore, it is concluded that the choice of analytical method does not lead to significant differences when VOCs are present in the sample. To account for potential variations in results based on water quality pollution control standards and regulations regarding the approval and testing of environmental measurement devices, a comparison of field sample concentration values was made using two widely used types of TOC analyzers in Korea. The results showed variations of 0.02 to 0.83 mg/L between methods depending on the manufacturer, highlighting the need for caution when selecting an instrument.

The Study on Reduction of Hazardous Materials using Eco-friendly Charcoal Composite Sheet (친환경 활성탄 복합시트의 유해물질 저감 연구)

  • Choi, Il-Hong;Kang, Sang-Sik;Lee, Su-Min;Yang, Seung-Woo;Kim, Kyo-Tae;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.615-621
    • /
    • 2018
  • Recently, various environmentally friendly products have been developed for improving the indoor air quality while pursuing a well-being nature-friendly healthy life as a core value. In this research, we not only solve the problems of existing environmentally friendly paints, but also developed a charcoal composite seats that can reduce radon, which is a natural radioactive substance, and evaluated the reduction effect of radon, formaldehyde and volatile organic compounds. In the charcoal composite seats, a sodium silicate emulsion and charcoal were mixed to prepare an charcoal liquid coating material, and the composite seats was fabricated by air-spray coating method. In order to analyze the hazardous substance reduction performance of the fabricated charcoal composite seats, radon was designed to comply with the Ministry of the Environment standard, formaldehyde and volatile organic compounds were designed to comply with KCL-FIR-1085 standard. As a result of the experiment, the fabricated charcoal composite seats was evaluated as having a radon reduction capability of about 90.8% from 20 hours, formaldehyde and volatile organic compounds were 3 hours, and the reduction capability of 96.7% and 96.6% was found respectively. It is considered that these results can be utilized as basic data at the time of product development for improvement of indoor air quality.

Preparation of Natural Wall Paint by Using Sericite Clay (견운모를 이용한 벽마감용 천연페인트 제조)

  • Kim, Munui;Lalhmunsiama, Lalhmunsiama;Lee, Seung-Mok;Jin, Kang-Jung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.501-505
    • /
    • 2017
  • Due to the rapid urbanization and increased population, there is an increase in airtight nature of buildings which causes serious indoor air pollution. Among several indoor air pollutants, volatile organic compounds (VOCs) emitted from paint are of major concern. Therefore, there is an urge for the development of environmental friendly paint products. In this wok, a natural wall paint (NWP) was prepared by utilizing a natural clay material "sericite" as a main component. A small chamber test was carried out to identify the toxic substances release from NWP and the results were compared with two eco-friendly commercial paints. The total VOCs were detected in trace level inside the test chamber and their concentrations were below the recommended indoor air quality standards. Toluene was not detected for NWP, whereas formaldehyde was observed in trace level. The toxicity index results were compared with two commercial paints and found that NWP exhibited less harmful gas emission. Based on certification rating of building materials, NWP can be classified as the first grade of building materials. Due to the above advantages, the use of sericite as a major component in NWP will be a useful technique to maintain the indoor air quality.

Optimization of Electrolytic Oxidant OCl- Production for Malodorous VOCs Removal (악취성 VOCs 제거를 위한 전해 산화제 OCl-의 생산 최적화)

  • Yang, Woo Young;Lee, Tae Ho;Ryu, Hee Wook
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2021
  • Volatile organic compounds (VOCs) occur in indoor and outdoor industrial and urban areas and cause environmental problems. Malodorous VOCs, along with aesthetic discomfort, can have a serious effect on the human body. Compared with the existing method of reducing malodorous VOCs, a wet scrubbing method using an electrolytic oxidant has the advantage of reducing pollutants and regenerating oxidants. This study investigated the optimal conditions for producing OCl-, a chlorine-oxidant. Experiments were conducted by changing the type of anode and cathode electrode, the type of electrolyte, the concentration of electrolytes, and the current density. With Ti/IrO2 as the anode electrode and Ti as the cathode electrode, OClproduction was highest and most stable. Although OCl- production was similar with the use of KCl or NaCl, NaCl is preferable because it is cheap and easy to obtain. The effect of NaCl concentration and current density was examined, and the OCl- production rate and concentration were highest at 0.75 M NaCl and 0.03 A cm-2. However, considering the cost of electric power, OCl- production under the conditions of 1.00 M NaCl and 0.01 A cm-2 was most effective among the conditions examined. It is desirable to produce OCl- by adjusting the current density in accordance with the concentration and characteristics of pollutants.

Seasonal Variations in the Concentration of Persistent Organochlorine Pesticides in Atmosphere (대기중 난분해성 유기염소계 농약의 계절별 농도변화)

  • Chung, Rye-Pyo;Choi, Min-Kyu;Yeo, Hyun-Gu;Chun, Man-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • From July to November 1999, air samples were collected from Ansung, Korea, to identify the seasonal variation in organochlorine pesticides(OCPs). OCPs maximum(mean) concentrations were as follows: heptachlor, $14.0\;pg/m^3(3.6\;pg/m^3)$; heptachlor epoxide, $28.7\;pg/m^3(11.7\;pg/m^3)$; DDE, $40.6\;pg/m^3(20.6\;pg/m^3)$; endosulfan sulfate, $98.9\;pg/m^3(36.6\;pg/m^3)$. The higher concentration of the locally and seasonally used pesticide endosulfan[1759.2 $pg/m^3(453.4\;pg/m^3)$] was found. The concentrations of all OCPs were higher in summer than those in fall. This pattern suggests that the concentrations may be increased by evaporation from surfaces(soil, water, vegetation, etc) with increasing the temperature and by much usage in growing season, particularly in summer, for endosulfan.

  • PDF

Activity of Methanogens in the High Rate Anaerobic Digestion of Swine Wastewater Containing High Ammonia (고농도 암모니아를 함유한 돈사폐수의 고율혐기성 소화시 메탄균의 활성연구)

  • Oh, Sae-Eun;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.981-987
    • /
    • 2000
  • Upflow anaerobic sludge blanket(UASB) reactor was operated for treating swine wastewater containing high ammonia nitrogen to assess their performance and toxicity of free ammonia concentration. In the reactor, chemical oxygen demand(COD) removed about 70% at $2.6kgCOD/m^3.day$ of organic loading rate(OLR) and 3 days of hydraulic retention time (HRT), while it was decreased when OLR and HRT was maintained $7kg\;COD/m^3.day$ and 2 days, respectively. Also UASB reactor was evaluated the activity of methane producing bacteria(MPB) according to change of free ammonia concentrations, MPB activity of applied sludge in the 500 and $1000mg-N/{\ell}$ of free ammonia concentration was inhibited by 4% and 40%, respectively. This clearly showed that free ammonia concentration less than $500mg-N/{\ell}$ showed no inhibition to MPB in anaerobic treatment of organics, UASB reactor was stabilized easily less than $1000mgVSS/{\ell}$ due to degradation of organic solids by the high activities of anaerobes.

  • PDF

Odorous Pollutant Concentration Levels in the Ban-Wall Industrial Area and Its Surrounding Regions (산업단지 및 주거지역에 대한 환경대기 중 주요 악취물질의 농도특성에 관한 연구 - 안산시 반월공단을 중심으로 -)

  • Choi, Ye-Jin;Kim, Ki-Hyun;Jeon, Eui-Chan
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.209-220
    • /
    • 2006
  • In this study, the distribution patterns of major odorous compounds in ambient air were investigated in the areas surrounding the Ban-Wall industrial complex of Ansan, Korea (Aug. 2004 to Sep. 2005). The results indicated the environmental significance of several major odorous compounds which include carbonyl compounds, reduced sulfur compounds (RSC), and volatile organic compounds (VOC). When the results were compared on a diurnal basis, the afternoon time concentration of most odorous compounds were notably higher than their morning time counterparts. It also indicated that the odor concentrations differed greatly, in terms of spatial grouping scheme of data sets, such as between industrial area and non-industrial area. The comparison of spatial patterns indicated that the concentrations of most of the compounds at the industrial area were maintained at high concentration levels, compared to the surrounding areas. The overall results of this study thus suggest that the distribution of odorous compounds in a large industrial complex can exhibit a unique pattern of their own.

A Study on The Groundwater Contamination Focused on VOCs in Chung-Nam Area (충청남도 지역의 VOCs를 중심으로 한 지하수오염 실태)

  • 이창균;장순웅;유지택;임봉수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • This research was investigated to examine the status of goundwater contamination in Chung-Nam area over 2 years from 1996 May to 1998 May. The results show that the overall detection rates of VOCs (volatile organic compounds) by region were as followed: industrial region > agricultural & industrial complex region > gas station region > around industrial region > downtown region, and excess rates of those were as followed: industrial region > gas station region > agricultural & industrial region > around industrial region > downtown region. Benzene and TCE of VOCs examined in Chon-An industrial region exceeded drinking water standard. At the agricultural & industrial complex region, the observed mean concentration of TCE was 3.107 mg/L and TCE was also detected at 48.152 mg/L which is 100 times higher than drinking water standard, and other VOCs were also observed at higher concentrations as well. Based on our studies, It is concluded that appropriate remedial action should be performed to protect further groundwater contamination and to restore groundwater quality in Chung-Nam area.

  • PDF

Binding of Zeolites to Inorganic Fiber using Covalent Linkers (공유결합을 이용한 무기질 섬유와 제올라이트의 결합)

  • Song, Kyeong-Keun;Yoo, Yoon-Jong;Kim, Hong-Soo;Ha, Kwang
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.254-258
    • /
    • 2006
  • Zeolites with excellent adsorption capacity of volatile organic compounds were attached onto inorganic fibers which were the raw materials of honeycomb-type adsorbers. The amounts of zeolite particles attached onto the fibers considerably increased by treating them with hydrochloric acid, sulfuric acid, or hydrofluoric acid. Various functional groups such as chloropropyl, aminopropyl and epoxy groups of silane compounds, and amine groups of polyethylenimine were employed as covalent linkage materials between the fibers and zeolite particles. The state of the fibers coated with zeolite particles was examined by scanning electron microscopy, and the amounts of zeolite particles bound to the fibers were estimated from their BET surface areas. The largest amount was obtained when polyethylenimine was employed as a linkage material. Polyethylenimine was the most effective for attaching zeolite particles onto the inorganic fibers among various linkers employed.