• Title/Summary/Keyword: 훈련지능

검색결과 323건 처리시간 0.027초

자율운항선박 원격제어 관련 제어 데이터와 운용자의 적합성 평가 방법 (Suitability Evaluation Method for Both Control Data and Operator Regarding Remote Control of Maritime Autonomous Surface Ships)

  • 노화섭;김홍진;임정빈
    • 한국항해항만학회지
    • /
    • 제48권3호
    • /
    • pp.214-220
    • /
    • 2024
  • 원격제어는 자율운항선박의 원격 운용에 적용하기 위한 것으로, 운용자가 원격제어 시스템에서 생성되는 제어 데이터를 이용하여 수행한다. 성공적인 원격제어를 위해서는 원격제어 3원칙(안전성, 신뢰성, 가용성)의 준수가 필요한데, 이를 위해서 우선적으로 제어 데이터와 운용자 양쪽에 대한 원격제어 적합성이 확보되어야 한다. 또한, 원격제어 적합성 평가를 위해서는 실제 선박에 대한 실험이 필요한데, 현재 이와 관련된 국제규정이 마련되어 있지 않고, 실제 선박에 대한 실험은 위험하며, 많은 비용과 시간이 걸리는 등의 문제가 있다. 본 연구의 목적은 실제 선박조종에 사용된 제어장치들의 출력 값을 이용한 적합성 평가 방법의 개발에 있다. 이 연구에서는 선박 제어장치의 출력 값을 제어 데이터로 이용한 데이터 적합성과 출력 값에 대한 운용자의 추종 값을 이용한 운용자 적합성 등의 2가지 방법을 제안하였다. 실험은 국립한국해양대학교 실습선 '한나라'호의 원격제어를 위해 구성된 육상 원격제어 시스템을 이용하였다. 실험방법은 실습선의 제어장치에서 출력된 값에 대한 운용자의 추종 값을 획득함과 동시에 이 추종 값이 포함된 추종 데이터를 선박과 육상 사이에서 송수신하는 절차의 반복과정을 통해 수행하였다. 평가 결과, 데이터에 관한 송수신 성능은 원격운용에 적합한 것으로 나타났으나, 운용자의 추종 성능은 더 많은 교육과 훈련이 필요한 것으로 분석되었다. 그래서 제안한 평가방법은 원격제어의 3원칙 확보에 필요한 제어 데이터와 원격 운용자 양쪽의 적합성 평가와 분석에 적용 가능함을 알았다.

정보보호 직무 수행을 위해 필요한 지식 및 기술: 텍스트 마이닝을 이용한 구인광고와 NCS의 비교 (Information Security Job Skills Requirements: Text-mining to Compare Job Posting and NCS)

  • 전효정;박병조;김태성
    • 경영정보학연구
    • /
    • 제25권3호
    • /
    • pp.179-197
    • /
    • 2023
  • 산업진흥 정책의 하나로 정보보호 인력양성 및 교육이 꾸준히 이루어지고 있지만, 시장에는 여전히 중고급 이상의 숙련인력은 부족하다. 정보보안 공시제도의 시행 및 확대에 따라, 정보보호를 전담할 전문인력의 확보 및 유지의 필요성은 더욱 커지고 있다. 하지만, 지능정보사회로의 진입에 따라 정보기술 업무와 정보보호 업무 간의 구분은 더욱 애매해지고 있어, 정보보호만의 전문성을 키우고 인정받기 위한 수단이 필요하다. 본 논문에서는 업무수행에 필요한 지식 및 기술을 규명하여 정보보호 전문성 확보를 위한 수단으로 활용하는 방안을 제안하고자 하였다. 2014년, 2019년, 2022년 게시된 정보보호 인력 구인광고 데이터를 수집하여, 직무 키워드를 비교한 결과, 구축, 운영, 기술지원, 네트워크, 보안솔루션 등이 주요 키워드임을 확인하였으며, 이는 년도별로 차이가 없었다. 또한, 기업의 실제 수요를 파악하기 위해, 텍스트마이닝 기법을 이용하여 구인광고 내용과 국가직무능력표준 정보보호 분야 지식기술 내용을 비교 분석하였다. 그 결과, 실제 현업에서는 기술개발, 네트워크, 운영체제 등 기술적인 능력을 선호하는 것으로 나타났지만, 직업훈련에서는 법제도, 인증제도 등 관리 능력이 우선시되고 있음을 확인하였다.

A Study on Strategic Development Approaches for Cyber Seniors in the Information Security Industry

  • Seung Han Yoon;Ah Reum Kang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.73-82
    • /
    • 2024
  • 2017년 UN에서는 전 세계적으로 60세 이상 인구는 모든 젊은 연령층보다 빠르게 증가하고 있으며, 2050년까지 60세 이상 인구는 아프리카를 제외한 전 세계 인구의 최소 25%를 구성할 것으로 예상하였다. 세계는 전반적으로 고령화로 인해 일을 할 수 있는 인구의 증가율이 감소하고 있으며, 청년층은 힘들고 어려운 직업을 선호하지 않고 있다. 이론적으로는 인공지능을 겸비한 AI가 모든 분야에서 사람을 대신할 수 있다고 하지만 윤리적인 판단 등 현실 세계의 정보보호 분야에서는 사람의 판단과 노하우가 절대적으로 필요하다. 이에, 본 논문에서는 IT 종사자 중 50대 이상 퇴직자 또는 전직을 희망하는 사람을 대상으로 재교육을 통해 현업으로 유입시키는 방법을 제안하고자 한다. 연구를 위해 수요 부분의 정부·공공기관 21곳과 공급 부분의 보안관제전문업체 9곳을 대상으로 설문하였으며 설문 결과 공급(78%)와 수요(90%) 모두가 절대적으로 필요하다는 데 의견을 모았다. 향후 이 연구 결과를 토대로 현장에 적용한다면 인구 저출산 100세 시대에 정보보호분야 시니어의 전략적 육성으로 대한민국 정보보호산업의 초석이 될 신규시장을 발굴할 수 있을 것이다.

몰드 경화 공정 중 패키지 휨 예측을 위한 비용 절감형 머신러닝 방법 (Cost-effective Machine Learning Method for Predicting Package Warpage during Mold Curing)

  • 박성환;김태현;이은호
    • 마이크로전자및패키징학회지
    • /
    • 제31권3호
    • /
    • pp.24-37
    • /
    • 2024
  • 반도체 패키지의 초박형화로 인해 작은 열하중에서도 Warpage가 크게 발생하며, 이는 제품 신뢰성에 심각한 영향을 미칠 수 있다. 특히 몰드 경화 공정에서의 Warpage 예측은 복합적인 열-화학-기계적 현상으로 인해 어려운 문제이다. 본 연구는 몰드 경화 공정에서 Warpage를 예측하기 위한 비용 절감형 머신러닝 모델 구축 방법을 분석하였다. 경화 공정에서 시간과 온도에 따른 경화도를 특성화하고, 이를 통해 재료의 기계적 특성을 수치화하였다. ABAQUS UMAT을 사용해 특성화된 재료 특성으로 FEM 시뮬레이션 모델을 개발하였으며, 패키지의 적층 구조에 따른 Local Warpage를 예측하는 Warpage formula를 제안하고 FEM 시뮬레이션 결과와 비교하여 검증하였다. 개발된 모델과 이론식을 통해 다양한 설계 인자를 고려한 몰드 경화 공정에서 Warpage를 저비용으로 예측할 수 있는 방법을 제시하였다. 이 방법은 머신러닝 입력 변수로 Warpage formula를 사용하고, 훈련 데이터 세트를 효율적으로 구축하여 Single IC 패키지 기준으로 98% 이상의 예측 정확도와 96.5%의 시뮬레이션 시간 절약을 가능하게 한다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.

적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법 (Anomaly Detection for User Action with Generative Adversarial Networks)

  • 최남웅;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.43-62
    • /
    • 2019
  • 한때, 이상 탐지 분야는 특정 데이터로부터 도출한 기초 통계량을 기반으로 이상 유무를 판단하는 방법이 지배적이었다. 이와 같은 방법론이 가능했던 이유는 과거엔 데이터의 차원이 단순하여 고전적 통계 방법이 효과적으로 작용할 수 있었기 때문이다. 하지만 빅데이터 시대에 접어들며 데이터의 속성이 복잡하게 변화함에 따라 더는 기존의 방식으로 산업 전반에 발생하는 데이터를 정확하게 분석, 예측하기 어렵게 되었다. 따라서 기계 학습 방법을 접목한 SVM, Decision Tree와 같은 모형을 활용하게 되었다. 하지만 지도 학습 기반의 모형은 훈련 데이터의 이상과 정상의 클래스 수가 비슷할 때만 테스트 과정에서 정확한 예측을 할 수 있다는 특수성이 있고 산업에서 생성되는 데이터는 대부분 정답 클래스가 불균형하기에 지도 학습 모형을 적용할 경우, 항상 예측되는 결과의 타당성이 부족하다는 문제점이 있다. 이러한 단점을 극복하고자 현재는 클래스 분포에 영향을 받지 않는 비지도 학습 기반의 모델을 바탕으로 이상 탐지 모형을 구성하여 실제 산업에 적용하기 위해 시행착오를 거치고 있다. 본 연구는 이러한 추세에 발맞춰 적대적 생성 신경망을 활용하여 이상 탐지하는 방법을 제안하고자 한다. 시퀀스 데이터를 학습시키기 위해 적대적 생성 신경망의 구조를 LSTM으로 구성하고 생성자의 LSTM은 2개의 층으로 각각 32차원과 64차원의 은닉유닛으로 구성, 판별자의 LSTM은 64차원의 은닉유닛으로 구성된 1개의 층을 사용하였다. 기존 시퀀스 데이터의 이상 탐지 논문에서는 이상 점수를 도출하는 과정에서 판별자가 실제데이터일 확률의 엔트로피 값을 사용하지만 본 논문에서는 자질 매칭 기법을 활용한 함수로 변경하여 이상 점수를 도출하였다. 또한, 잠재 변수를 최적화하는 과정을 LSTM으로 구성하여 모델 성능을 향상시킬 수 있었다. 변형된 형태의 적대적 생성 모델은 오토인코더의 비해 모든 실험의 경우에서 정밀도가 우세하였고 정확도 측면에서는 대략 7% 정도 높음을 확인할 수 있었다.

기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정 (Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images)

  • 배세정;손보경;성태준;이연수;임정호;강유진
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1009-1029
    • /
    • 2023
  • 도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.

딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석 (Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning)

  • 김나영;윤예린;최재완;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.351-361
    • /
    • 2024
  • 위성영상은 구름, 구름 그림자, 지형 그림자 등을 포함한 다양한 요소를 포함하고 있으며, 이러한 요소들을 정확히 식별하고 제거하는 것은 원격 탐사 분야에서 위성영상의 신뢰성을 유지하기 위해 필수적이다. 이를 위해 Landsat-8, Sentinel-2, Compact Advanced Satellite 500-1 (CAS500-1)과 같은 위성들은 분석준비자료(Analysis Ready Data)의 일환으로 영상과 함께 사용가능한 데이터 마스크(Usable Data Mask, UDM)를 제공하고 있으며, UDM 데이터의 정확한 구축을 위해 구름 및 구름 그림자 탐지가 필수적이다. 기존의 구름 및 구름 그림자 탐지 기법은 임계값 기반 기법과 인공지능 기반 기법으로 나뉘며, 최근에는 많은 양의 데이터를 처리하는 데 유리한 딥러닝 네트워크를 활용한 인공지능 기법이 많이 사용되고 있다. 본 연구에서는 오픈소스 데이터 셋을 통해 훈련된 딥러닝 네트워크 기반 구름 및 구름 그림자 탐지를 통해 고해상도 위성영상의 UDM 구축 가능성을 분석하고자 하였다. 딥러닝 네트워크의 성능을 검증하기 위해 Landsat-8, Sentinel-2, CAS500-1 위성영상과 함께 제공된 기구축된 UDM 데이터와 딥러닝 네트워크가 생성한 탐지 결과 간의 유사성을 분석하였다. 그 결과, 딥러닝 네트워크가 생성한 탐지 결과는 높은 정확도를 나타냈다. 또한 UDM을 제공하지 않는 고해상도 위성영상인 KOMPSAT-3/3A 영상에 적용하였다. 실험 결과, 딥러닝 네트워크를 통하여 고해상도 위성영상 내에 존재하는 구름 및 구름 그림자를 효과적으로 탐지한 것을 확인하였다. 이를 통해 고해상도 위성영상에서도 딥러닝 네트워크를 사용하여 UDM 데이터를 구축할 수 있는 가능성을 확인하였다.

BERT를 활용한 속성기반 감성분석: 속성카테고리 감성분류 모델 개발 (Aspect-Based Sentiment Analysis Using BERT: Developing Aspect Category Sentiment Classification Models)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.1-25
    • /
    • 2020
  • 대규모 텍스트에서 관심 대상이 가지고 있는 속성들에 대한 감성을 세부적으로 분석하는 속성기반 감성분석(Aspect-Based Sentiment Analysis)은 상당한 비즈니스 가치를 제공한다. 특히, 텍스트에 속성어가 존재하는 명시적 속성뿐만 아니라 속성어가 없는 암시적 속성까지 분석 대상으로 하는 속성카테고리 감성분류(ACSC, Aspect Category Sentiment Classification)는 속성기반 감성분석에서 중요한 의미를 지니고 있다. 본 연구는 속성카테고리 감성분류에 BERT 사전훈련 언어 모델을 적용할 때 기존 연구에서 다루지 않은 다음과 같은 주요 이슈들에 대한 답을 찾고, 이를 통해 우수한 ACSC 모델 구조를 도출하고자 한다. 첫째, [CLS] 토큰의 출력 벡터만 분류벡터로 사용하기보다는 속성카테고리에 대한 토큰들의 출력 벡터를 분류벡터에 반영하면 더 나은 성능을 달성할 수 있지 않을까? 둘째, 입력 데이터의 문장-쌍(sentence-pair) 구성에서 QA(Question Answering)와 NLI(Natural Language Inference) 타입 간 성능 차이가 존재할까? 셋째, 입력 데이터의 QA 또는 NLI 타입 문장-쌍 구성에서 속성카테고리를 포함한 문장의 순서에 따른 성능 차이가 존재할까? 이러한 연구 목적을 달성하기 위해 입력 및 출력 옵션들의 조합에 따라 12가지 ACSC 모델들을 구현하고 4종 영어 벤치마크 데이터셋에 대한 실험을 통해 기존 모델 이상의 성능을 제공하는 ACSC 모델들을 도출하였다. 그리고 [CLS] 토큰에 대한 출력 벡터를 분류벡터로 사용하기 보다는 속성카테고리 토큰의 출력 벡터를 사용하거나 두 가지를 함께 사용하는 것이 더욱 효과적이고, NLI 보다는 QA 타입의 입력이 대체적으로 더 나은 성능을 제공하며, QA 타입 안에서 속성이 포함된 문장의 순서는 성능과 무관한 점 등의 유용한 시사점들을 발견하였다. 본 연구에서 사용한 ACSC 모델 디자인을 위한 방법론은 다른 연구에도 비슷하게 응용될 수 있을 것으로 기대된다.

합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로 (Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image)

  • 서이안;신경식
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.1-19
    • /
    • 2018
  • 최근 딥러닝은 오디오, 텍스트 및 이미지 데이터와 같은 비 체계적인 데이터를 대상으로 다양한 추정, 분류 및 예측 문제에 사용 및 적용되고 있다. 특히, 의류산업에 적용될 경우 딥러닝 기법을 활용한 의류 인식, 의류 검색, 자동 제품 추천 등의 심층 학습을 기반으로 한 응용이 가능하다. 이 때의 핵심모형은 합성곱 신경망을 사용한 이미지 분류이다. 합성곱 신경망은 입력이 전달되고 출력에 도달하는 과정에서 가중치와 같은 매개 변수를 학습하는 뉴런으로 구성되고, 영상 분류에 가장 적합한 방법론으로 사용된다. 기존의 의류 이미지 분류 작업에서 대부분의 분류 모형은 의류 이미지 자체 또는 전문모델 착용 의류와 같이 통제된 상황에서 촬영되는 온라인 제품 이미지를 사용하여 학습을 수행한다. 하지만 본 연구에서는 통제되지 않은 상황에서 촬영되고 사람들의 움직임과 다양한 포즈가 포함된 스트릿 패션 이미지 또는 런웨이 이미지를 분류하려는 상황을 고려하여 분류 모형을 훈련시키는 효과적인 방법을 제안한다. 이동성을 포착하는 런웨이 의류 이미지로 모형을 학습시킴으로써 분류 모형의 다양한 쿼리 이미지에 대한 적응력을 높일 수 있다. 모형 학습 시 먼저 ImageNet 데이터셋을 사용하여 pre-training 과정을 거치고 본 연구를 위해 수집된 32 개 주요 패션 브랜드의 2426개 런웨이 이미지로 구성된 데이터셋을 사용하여 fine-tuning을 수행한다. 학습 과정의 일반화를 고려해 10번의 실험을 수행하고 제안된 모형은 최종 테스트에서 67.2 %의 정확도를 기록했다. 본 연구 모형은 쿼리 이미지가 런웨이 이미지, 제품 이미지 또는 스트릿 패션 이미지가 될 수 있는 다양한 분류 환경에 적용될 수 있다. 구체적으로는 패션 위크에서 모바일 어플리케이션 서비스를 통해 브랜드 검색을 용이하게 하는 서비스를 제공하거나, 패션 잡지사의 편집 작업에 사용되어 브랜드나 스타일을 분류하고 라벨을 붙일 수 있으며, 온라인 쇼핑몰에서 아이템 정보를 제공하거나 유사한 아이템을 추천하는 등의 다양한 목적에 적용될 수 있다.