• Title/Summary/Keyword: 훈련시스템

Search Result 1,489, Processing Time 0.028 seconds

Development of Simulator for Analyzing Intercept Performance of Surface-to-air Missile (지대공미사일 요격 성능 분석 시뮬레이터 개발)

  • Kim, Ki-Hwan;Seo, Yoon-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2010
  • In modern war, Intercept Performance of SAM(Surface to Air Missile) is gaining importance as range and precision of Missile and Guided Weapon on information warfare have been improved. An aerial defence system using Surface-to-air Radar and Guided Missile is needed to be built for prediction and defense from threatening aerial attack. When developing SAM, M&S is used to free from a time limit and a space restriction. M&S is widely applied to education, training, and design of newest Weapon System. This study was conducted to develop simulator for evaluation of Intercept Performance of SAM. In this study, architecture of Intercept Performance of SAM analysis simulator for estimation of Intercept Performance of various SAM was suggested and developed. The developed Intercept Performance of SAM analysis simulator was developed by C++ and Direct3D, and through 3D visualization using the Direct3D, it shows procedures of the simulation on a user animation window. Information about design and operation of Fighting model is entered through input window of the simulator, and simulation engine consisted of Object Manager, Operation Manager, and Integrated Manager conducts modeling and simulation automatically using the information, so the simulator gives user feedback in a short time.

Study on the Prediction of Motion Response of Fishing Vessels using Recurrent Neural Networks (순환 신경망 모델을 이용한 소형어선의 운동응답 예측 연구)

  • Janghoon Seo;Dong-Woo Park;Dong Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.505-511
    • /
    • 2023
  • In the present study, a deep learning model was established to predict the motion response of small fishing vessels. Hydrodynamic performances were evaluated for two small fishing vessels for the dataset of deep learning model. The deep learning model of the Long Short-Term Memory (LSTM) which is one of the recurrent neural network was utilized. The input data of LSTM model consisted of time series of six(6) degrees of freedom motions and wave height and the output label was selected as the time series data of six(6) degrees of freedom motions. The hyperparameter and input window length studies were performed to optimize LSTM model. The time series motion response according to different wave direction was predicted by establised LSTM. The predicted time series motion response showed good overall agreement with the analysis results. As the length of the time series increased, differences between the predicted values and analysis results were increased, which is due to the reduced influence of long-term data in the training process. The overall error of the predicted data indicated that more than 85% of the data showed an error within 10%. The established LSTM model is expected to be utilized in monitoring and alarm systems for small fishing vessels.

An Acoustic Event Detection Method in Tunnels Using Non-negative Tensor Factorization and Hidden Markov Model (비음수 텐서 분해와 은닉 마코프 모델을 이용한 터널 환경에서의 음향 사고 검지 방법)

  • Kim, Nam Kyun;Jeon, Kwang Myung;Kim, Hong Kook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.9
    • /
    • pp.265-273
    • /
    • 2018
  • In this paper, we propose an acoustic event detection method in tunnels using non-negative tensor factorization (NTF) and hidden Markov model (HMM) applied to multi-channel audio signals. Incidents in tunnel are inherent to the system and occur unavoidably with known probability. Incidents can easily happen minor accidents and extend right through to major disaster. Most incident detection systems deploy visual incident detection (VID) systems that often cause false alarms due to various constraints such as night obstacles and a limit of viewing angle. To this end, the proposed method first tries to separate and detect every acoustic event, which is assumed to be an in-tunnel incident, from noisy acoustic signals by using an NTF technique. Then, maximum likelihood estimation using Gaussian mixture model (GMM)-HMMs is carried out to verify whether or not each detected event is an actual incident. Performance evaluation shows that the proposed method operates in real time and achieves high detection accuracy under simulated tunnel conditions.

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.

Trends in the use of big data and artificial intelligence in the sports field (스포츠 현장에서의 빅데이터와 인공지능 활용 동향)

  • Seungae Kang
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.115-120
    • /
    • 2022
  • This study analyzed the recent trends in the sports environment to which big data and AI technologies, which are representative technologies of the 4th Industrial Revolution, and approached them from the perspective of convergence of big data and AI technologies in the sports field. And the results are as follows. First, it is being used for player and game data analysis and team strategy establishment and operation. Second, by combining big data collected using GPS, wearable equipment, and IoT with artificial intelligence technology, scientific physical training for each player is possible through user individual motion analysis, which helps to improve performance and efficiently manage injuries. Third, with the introduction of an AI-based judgment system, it is being used for judge judgment. Fourth, it is leading the change in marketing and game broadcasting services. The technology of the 4th Industrial Revolution is bringing innovative changes to all industries, and the sports field is also in the process. The combination of big data and AI is expected to play an important role as a key technology in the rapidly changing future in a sports environment where scientific analysis and training determine victory or defeat.

Overseas Address Data Quality Verification Technique using Artificial Intelligence Reflecting the Characteristics of Administrative System (국가별 행정체계 특성을 반영한 인공지능 활용 해외 주소데이터 품질검증 기법)

  • Jin-Sil Kim;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • In the global era, the importance of imported food safety management is increasing. Address information of overseas food companies is key information for imported food safety management, and must be verified for prompt response and follow-up management in the event of a food risk. However, because each country's address system is different, one verification system cannot verify the addresses of all countries. Also, the purpose of address verification may be different depending on the field used. In this paper, we deal with the problem of classifying a given overseas food business address into the administrative district level of the country. This is because, in the event of harm to imported food, it is necessary to find the administrative district level from the address of the relevant company, and based on this trace the food distribution route or take measures to ban imports. However, in some countries the administrative district level name is omitted from the address, and the same place name is used repeatedly in several administrative district levels, so it is not easy to accurately classify the administrative district level from the address. In this study we propose a deep learning-based administrative district level classification model suitable for this case, and verify the actual address data of overseas food companies. Specifically, a method of training using a label powerset in a multi-label classification model is used. To verify the proposed method, the accuracy was verified for the addresses of overseas manufacturing companies in Ecuador and Vietnam registered with the Ministry of Food and Drug Safety, and the accuracy was improved by 28.1% and 13%, respectively, compared to the existing classification model.

Different Abortion Approaches in Europe and Women's Health: Implications for Korean Abortion Debates (유럽 각국의 낙태 접근과 여성건강 - 한국 낙태논쟁에 대한 함의 -)

  • Chung, Jin-Joo
    • Issues in Feminism
    • /
    • v.10 no.1
    • /
    • pp.123-158
    • /
    • 2010
  • For the last several months, abortion debates have sparkled in Korea. The government has escalated the need of active punishment of illegal abortions to solve low fertility problems, while some obstetricians and gynecologist have proclaimed stoppage of illegal abortions suing colleague doctors who has conducted illegal abortions. Women's rights groups and researchers have also responded to the abortion debate claiming that women's decisions over their pregnancy are important in making of abortion policies. To contribute to Korean abortion debates, his paper aims to analyze European experiences of abortion polices in relation to the consequences on women's health. For the analysis of European abortion experiences, three countries - Ireland, U.K, and Netherland -are chosen. These three countries are selected since their legal and social acceptance of abortion and the level of safe abortion system are different. Each country is reviewed by national abortion policy, legal regulation, medical system and the role of civil society. The analysis shows several implications for abortion debates occurring in Korea. Various systematic policy mechanisms - abortion on women' request, abortions without complicated doctor's referrals, transparent and anonymous counseling and information provision regarding abortion, training and education for medical professionals to guarantee high quality abortion, abortions funded publicly for women to improve their access to abortions, steady monitoring and auditing abortion procedures and outcomes for safe abortion and so on - are required in Korean society. Two track procedures - safe abortion on women's request and prevention of unwanted pregnancy - are needed for reproduction of healthy women and society.

A Study on Changes in Seafarers Functions and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 선원직능 변화와 인력양성에 관한 연구)

  • Sung-Ju Lim;Yong-John Shin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.78-80
    • /
    • 2021
  • This study is based on Degree of Recognition and AHP surveys for experts, this study investigates changes in the demand of seafarers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships(MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in seafarers' skills. It also analyzes and proposes a plan for cultivating seafarers accordingly. As a result of Degree of Recognition and AHP analysis, it is analyzed that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but jobs such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore based control.By evaluating the importance of change factors in the duties of seafarers in Maritime Autonomous Surface Ships, this study provides information on seafarers educational institutions response strategies for nurturing seafarers and prioritization of resource allocation, etc. The importance of factors was compared and evaluated to suggest changes in the duties of seafarers and methods of nurturing seafarers according to the introduction of Maritime Autonomous Surface Ships.It is expected that this study is meaningful as it systematically derived the duties and competency factors of seafarers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

  • PDF

Development of Cloud-based VTS Integration Platform for IVEF Service Implementation (IVEF 서비스 구현을 위한 클라우드 기반 VTS 통합 플랫폼 개발)

  • Yunja Yoo;Dae-Won Kim;Chae-Uk Song;Jung-Jin Lee;Sang-Gil Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.893-901
    • /
    • 2023
  • The International Association Marine Aids to Navigation and Lighthouse Authorities (IALA) proposed guidelines for VTS manual operation in 2016 for safe and efficient operation of ship. The Korea Coast Guard (KCG) established and operated 19 VTS centers in ports and coastal waters across the country by 2022 based on the IALA VTS manual and VTS operator's education and training guidelines. In addition, IALA proposed the Inter-VTS Exchange Format (IVEF) Service recommendation (V-145), a standard for data exchange between VTS, in 2011 for efficient e-Navigation system services and safe and efficient VTS service support by VTS authorities. The IVEF service in a common framework for ship information exchange, and it presents seven basic IVEF service (BISs) models. VTS service providers can provide safer and more efficient VTS services by sharing VTS information on joint area using IVEF standards. Based on the BIS data, interaction, and interfacing models, this paper introduced the development of the cloud-based VTS integration services performed by the KCG and the results of the VTS integration platform test-bed for IVEF service implementation. In addition, the results of establishing a cloud VTS integrated platform test-bed for the implementation of IVEF service and implementing the main functions of IVEF service were presented.

Development of Metrics to Measure Reusability Quality of AIaaS

  • Eun-Sook Cho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.147-153
    • /
    • 2023
  • As it spreads to all industries of artificial intelligence technology, AIaaS equipped with artificial intelligence services is emerging. In particular, non-IT companies are suffering from the absence of software experts, difficulties in training big data models, and difficulties in collecting and analyzing various types of data. AIaaS makes it easier and more economical for users to build a system by providing various IT resources necessary for artificial intelligence software development as well as functions necessary for artificial intelligence software in the form of a service. Therefore, the supply and demand for such cloud-based AIaaS services will increase rapidly. However, the quality of services provided by AIaaS becomes an important factor in what is required as the supply and demand for AIaaS increases. However, research on a comprehensive and practical quality evaluation metric to measure this is currently insufficient. Therefore, in this paper, we develop and propose a usability, replacement, scalability, and publicity metric, which are the four metrics necessary for measuring reusability, based on implementation, convenience, efficiency, and accessibility, which are characteristics of AIaaS, for reusability evaluation among the service quality measurement factors of AIaaS. The proposed metrics can be used as a tool to predict how much services provided by AIaaS can be reused for potential users in the future.