일반적으로 준거집합 문제는 확률에 관한 빈도주의가 직면하게 되는 문제로 알려져 있다. 헤이젝은 확률의 본성에 관한 다른 주요 이론들 역시 이 문제를 피할 수 없다고 주장하면서 조건부 확률을 원초적인 것으로 간주하면 이 문제는 해소된다고 주장한다. 이 논문에서 필자는 헤이젝의 논증을 비판적으로 검토하면서 준거집합 문제와 그 철학적 함축에 대한 올바른 이해 방식을 제시하고자 한다. 필자는 헤이젝의 주장을 두 가지, 즉 (i) 확률이 준거집합에 상대적이라는 주장과 (ii) 조건부 확률에 대한 비율 견해는 옳지 않다는 주장으로 구분하고, 이 두 주장이, 헤이젝의 생각과는 달리, 서로 연결될 필요가 없으며, 나아가 전자는 받아들이면서 후자는 거부하는 것이 옳다고 주장한다. 또한 필자는 준거집합의 동일성 기준을 두 기준, 즉 외연적 기준과 비외연적 기준으로 구분하고, 준거집합의 동일성 기준은 후자이어야 한다고 주장한다. 이를 위해서 필자는 준거집합 문제가 자격의 문제의 한 사례임을 논증한다.
문화는 정신적인 것에서부터 제도에 이르기까지 인간의 삶과 관련된 모든 것을 의미한다. 대중예술이라는 측면에서 대중문화는 디지털 정보매체의 발달과 관련하여 고전적인 것보다는 개성과 독창성을 중시하고, 사회 문화적인 의미 이상으로 그 중요성과 영향력을 가지고 있으며, 규격화되고 획일적이며, 동질적 성격을 띄는 특성을 지니고 있다. 대중문화의 기능은 순기능과 역기능으로 분류할 수 있는데, 전자는 문화가 대다수 대중의 삶의 표현이고 문화적 풍요를 경험할 수 있다는 관점이고, 후자는 대중을 한 집단의 구성원이나 개인으로 인식하기보다는 무차별적인 집합체로 인식하고, 상업주의, 획일성, 저속성 등의 부정적인 의미를 내포하고 있으며, 대중문화가 사회의 도덕과 윤리를 저해한다는 관점이다. (중략)
PWR 사용후핵연료 집합체를 운반하기 위한 대형용기는 다층구조로 구성되며, 충과 층사이의 접합부에서의 열전달이 발생한다. 이러한 열전달은 고체간의 열전달과 접합부에서의 공극안 기체를 통한 열전달로 구분되며, 후자에 의한 영향을 크게 받는다. 따라서, 2개의 chamber로 구성된 고온열시험장치에 대형용기의 section모델을 넣고 각각의 chamber에 다른 열용량을 유입한 시험을 수행하고 동일조건하의 열해석을 수행하여 열저항계수를 산출하였다.
기계학습에서 분류는 훈련 예제들로 학습하여 생성한 분류기를 활용하여 새로운 예제에 어느 한 범주를 부여하는 것을 말한다. 일반적으로 분류의 성능 즉 정확도의 향상은 학습 알고리즘을 개선하거나 훈련예제 집합을 변형시킴으로써 가능하다. 본 논문에서 소개하는 가상예제를 이용한 분류기 성능 향상 방안은 후자에 속한다. 실세계 분류문제에서 많은 수의 훈련예제들을 수집하는 일은 대상문제에 따라 비용이 많이 드는 경우가 있다. 또한 적은 수의 훈련예제를 학습해 생성한 분류기는 분류성능이 좋지 않을 수 있다. 본 논문에서는 이런 문제를 해결하기 위해서 가상예제를 생성해 훈련예제 집합에 추가하는 방안을 제안하고자 한다. 가상예제를 이용한 분류성능 향상방안이 $Na{\ddot{i}}ve$ Bayes 학습 알고리즘 성능 개선에 효과가 있음을 실험을 통해 확인하였다.
기계학습 기법을 이용한 문서분류시스템의 정확도를 결정하는 요인 중 가장 중요한 것은 학습문서 집합의 선택과 그것의 구성방법이다. 학습문서집합 선택의 문제란 임의의 문서공간에서 보다 정보량이 큰 적은 양의 문서집합을 골라서 학습문서로 채택하는 것을 말한다. 이렇게 선택한 학습문서집합을 재구성하여 보다 정확도가 높은 문서분류함수를 만드는 것이 학습문서집합 구성방법의 문제이다. 전자의 문제를 해결하는 대표적인 알고리즘이 능동적 학습(active learning) 알고리즘이고, 후자의 경우는 부스팅(boosting) 알고리즘이다. 본 논문에서는 이 두 알고리즘을 Naive Bayes 문서분류 알고리즘에 적응해보고, 이때 생기는 여러 가지 특징들을 분석하여 새로운 학습문서집합 구성방법인 AdaBUS 알고리즘을 제안한다. 이 알고리즘은 능동적 학습 알고리즘의 아이디어를 이용하여 최종 문서분류함수룰 만들기 위해 임시로 만든 여러 임시 문서분류함수(weak hypothesis)들 간의 변이(variance)를 높였다. 이를 통해 부스팅 알고리즘이 효과적으로 구동되기 위해 필요한 핵심 개념인 교란(perturbation)의 효과를 실현하여 문서분류의 정확도를 높일 수 있었다. Router-21578 문서집합을 이용한 경험적 실험을 통해, AdaBUS 알고리즘이 기존의 알고리즘에 비해 Naive Bayes 알고리즘에 기반한 문서분류시스템의 정확도를 보다 크게 향상시킨다는 사실을 입증한다.
이 논문은 슬라이딩 윈도우를 사용하는 스트림 데이터에서 모든 조인 연산의 상태를 저장하기에 메모리가 충분하지 않을 경우에, 연속적인 슬라이딩 윈도우 조인 연산의 근사치 답을 구하는 문제에 대한 연구이다. 근사치를 구하는 두 가지 방법으로는 최대 부분집합으로 근사치를 구하는 방법과 조인 결과에서 임의의 결과를 택하는 방법이 있다. 전자는 잃어버리는 튜플의 수를 최소화 하고, 후자는 조인의 결과가 집계로 나타날 때 사용된다. 이 논문에서는 임의의 입력 데이터에 슬라이딩 윈도우가 사용되는 경우 두 가지 방법으로 얻는 근사치 모두 효율적이지 못함을 보여준다. 기존의 최대 부분집합에 의해 근사치를 구하는 모델에서는 빈도-기반 모델을 사용하였는데. 샘플링이 문제가 되었다. 오히려 스트림 도착한 이후의 연령-기반 모델이 많은 응용분야에서 더 적절하게 사용 될 수 있음을 보여주고 있다. 이 논문에서는 최대 부분 집합과 임의의 결과라는 두 가지 근사치 측정법을 분석, 그 효율성을 비교하여 보여 준다. 또한, 메모리가 제한 되어있는 환경에서 다중 조인 연산이 수행 될 경우에, 어떤 경우에도 근사치 측정을 최적화할 수 있도록, 조인 연산 전체에 필요한 메모리를 적절하게 할당하는 알고리즘의 효율성을 분석한다.
인공 신경망 기반 자연어 처리 시스템들에서 단어를 벡터로 변환할 때, 크게 색인 및 순람표를 이용하는 방법과 합성곱 신경망이나 회귀 신경망을 이용하는 방법이 있다. 이 때, 전자의 방법을 사용하려면 시스템이 수용 가능한 어휘집이 정의되어 있어야 하며 새로운 단어를 어휘집에 추가하기 어렵다. 반면 후자의 방법을 사용하면 단어를 구성하는 문자들을 바탕으로 벡터 표현을 생성하기 때문에 어휘집이 필요하지 않지만, 추가적인 인공 신경망 구조가 필요하기 때문에 모델의 복잡도와 파라미터의 수가 증가한다는 단점이 있다. 본 연구에서는 위 두 방법의 한계를 극복하고자 Bag of Characters를 응용하여 단어를 구성하는 문자들의 집합을 바탕으로 벡터 표현을 생성하는 방법을 제안한다. 제안된 방법은 문자를 기반으로 동작하기 때문에 어휘집을 정의할 필요가 없으며, 인공 신경망 구조가 사용되지 않기 때문에 시스템의 복잡도도 증가시키지 않는다. 또한, 단어의 벡터 표현에 단어를 구성하는 문자들의 정보가 반영되기 때문에 Out-Of-Vocabulary 단어에 대한 성능도 어휘집을 사용하는 방법보다 우수할 것으로 기대된다.
필기 단어 인식 방법에는 낱자별 분할 및 낱자 단위 인식을 통해 인식하는 방법과 단어 사전을 이용하여 단어와 영상을 직접 비교하는 방법이 있다. 이 중 후자는 인식 대상이 되는 단어들이 작은 수의 어휘로 제한되었을 대 매우 효과적이다. 본 논문에서는 입력 영상이 주어졌을 때 자모를 순차적으로 탐색하고 그 결과의 최적 조합을 찾아 인식하는 사전을 이용한 필기 한글 단어 인식 방법을 제안한다. 입력 영상은 사전의 각 단어와의 매칭을 통해 인식된다. 단어는 필기 순서로 정렬된 자모열로 표현하고 입력 영상은 획들의 집합으로 표현한다. 단어의 자모들은 입력 영상으로부터 추출된 획들의 집합으로부터 단계적으로 탐색된다. 각 단계에서는 전 단계까지의 매칭 상태와 탐색하려는 자모의 형태로부터 자모가 존재할 것이라고 기대되는 정합 기대 영역을 설정한 후 그 안에서 자모 탐색기를 이용해 자모를 찾는다. 자모 탐색기는 획들의 집합으로 이루어진 복수의 자모 후보와 그 점수를 출력한다. 각 단계마다 생성된 자모 후보들은 최적의 단어 매칭을 찾기 위한 탐색 공간을 이룬다. 본 연구에서는 단어 사전을 trie로 구성하고, 탐색 과정에서 dynamic programming을 이용하여 효과적으로 탐색을 수행하였다. 또한 인식 속도를 향상시키기 위해 산전 축소, 탐색 공간 축소 등 다양한 지식을 이용하였다. 제안하는 방법은 무제약으로 쓰여진 필기 단어도 인식 할 수 있을 뿐 아니라, 동적 사전을 이용하기 때문에 사전의 내용이 변하는 환경에서도 적용할 수 있다. 인식 실험에서는 39개의 단어로 이루어진 사전에 대하여 613개의 단어 영상에 대해 실험한 결과 98.54%의 높은 인식률을 보임으로써 제안하는 방법이 매우 효과적임을 확인하였다. 아니라 곰팡이 균주도 실제 praxis에 적합하게 개발시킬수 있다. 따라서 앞으로 발효육제품제조에 있어 starter culture가 갖는 의미는 매우 중요하며 특히 짧은 숙성기간을 거치는 발효소시지의 제조에 있어서는 필수불가결한 공정의 한 분야로 자리잡게 될 것이다.큰 차이 없었으나 이중포장과 진공포장은 상당히 효과적임을 알 수 있었다.로는 18%에 비하여 22%가 더 적합한 것으로 생각되었다.$0.15{\sim}0.35%$이었다.irc}C$에서 $13.49{\times}10^{-3}$이었다. 이 값들을 Arrhenius식에 대입하여 구한 활성화 에너지는 24.795 kJ/Kmol이었다. 이 값으로부터 결정한 살균 포장약주 명가의 상용 저장 수명은 $10^{\circ}C$에서 2년, $20^{\circ}C$에서 1년 4개월, $25^{\circ}C$에서 1년 2개월 이었다. 서울의 매월 평균 온도를 기준으로 계산할 때 본제품의 상용저장기간은 1년 8개월이었다.로 반죽이 호화되고 가열시간이 그 이상으로 증가할 때도 반죽의 호화가 약간은 진행되지만 $90^{\circ}C$ 이상의 가열온도에서는 가열시간 0.5분 이내에 반죽의 호화가 급속히 일어나고 가열 시간을 증가시켜도 더이상의 호화는 일어나지 않았다. 같은 조건에서는 waxy corn starch 반죽의 호화 속도가 corn starch보다 더 빠른 것으로 나타났다. 대표적으로 52% 수분함량에서 반응속도상수(k)와 가열온도(T)사이의 관계식은 corn starch의 경우 $logk=11.1140-4.1226{\times}10^3(1/T)
온톨로지는 주어진 응용 도메인의 특성을 나타내는 관련 개념들의 집합과 정의, 그리고 그들간의 관계로 이루어진다. 본 논문에서는 온톨로지를 구축하고 갱신할 때의 시간과 비용을 줄이기 위하여 텍스트의 분석결과를 이용한 도메인 온톨로지의 반자동 구축방안을 제안한다. 이를 위하여 관련 문서들 내에 출현한 전문용어들의 처리방안을 제시하고, 추출한 개념들과 그들간의 관계를 온톨로지의 구축에 활용한다. 실험 도메인은 약품분야로 정하였으며, 구축한 온톨로지는 문서의 검색에 활용하였다. 온톨로지 내의 계층관계들이 문서검색에 효용이 있음을 보이기 위하여 일반적인 키워드기반 문서검색과 온톨로지 내의 관련 정보들을 연관피드백에 이용한 온톨로지기반 문서검색을 비교한 결과, 후자의 경우 정확률이 $4.97\%$, 재현율이 $0.78\%$ 향상됨을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.