• Title/Summary/Keyword: 후보 영역

Search Result 870, Processing Time 0.027 seconds

Face Region Extraction for the Facial Expression Recognition System (얼굴 표정 인식 시스템을 위한 얼굴 영역 추출)

  • Lim Ju-Hyuk;Song Kun-Woen
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.903-906
    • /
    • 2004
  • 본 논문에서는 얼굴 표정 인식 시스템을 위한 얼굴 영역 추출 알고리즘을 제안한다. 이는 입력 영상으로부터 얼굴 후보 영역을 추출하고, 추출된 얼굴 후보 영역에서 눈의 위치를 정확히 추출한다. 그리고 추출된 눈 영역들의 정보와 타원 방정식을 이용하여 최종 얼굴 영역을 추출한다. 얼굴 후보 영역은 HSI 칼라 좌표계에 기반한 적응적 피부색 구간 범위를 설정하여 추출하였다. 추출된 얼굴 후보 영역에서의 눈 영역 추출을 위해 밝기 정보를 이용하여 먼저 눈의 후보 화소들을 추출하고, 레이블링 과정을 통하여 영역별로 그룹화하였다. 각 후보 영역들의 화소 수, 가로세로비 및 위치 정보를 고려하여 최종 눈 영역을 추출하였다. 추출된 두 눈 영역에서 무게중심을 구하고 이를 이용하여 장축과 단축을 설정하여 타원방정식을 이용 최종 얼굴 영역을 추출하였다. 제안된 알고리즘은 조명 변화, 다양한 배경들을 가지는 얼굴 영상에서도 정확히 얼굴 영역을 추출할 수 있었다.

  • PDF

Vehicle Tracking for Forward Vehicle Detection (전방차량 인식을 위한 차량 추적 방법)

  • Jeong, Sung-Hwan;Kwon, Dong-Jin;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.486-487
    • /
    • 2012
  • 본 논문에서는 차량 내에 설치된 카메라를 이용하여 전방차량을 인식하는 FCW(Forward Collision Warning)시스템에서 주행 중인 전방 차량을 추적하는 알고리즘을 제안한다. 전방 차량의 후보 영역을 검출하기 위해 Haar-Adaboost를 이용하였으며 검색된 차량 후보 영역 내의 에지 정보를 이용하여 차량 후보 영역을 필터링하였다. 필터링된 차량 영역은 영역기반과 Kalman 예측치를 이용하여 차량을 추적하는 방법으로 차량 검색기가 차량 영역을 검색하지 못하는 경우 Kalman 예측치를 통해 차량 후보 영역을 예측하고 예측된 차량 영역을 검증함으로써 효율적인 전방 차량 인식이 가능하였다. 본 제안 방법을 실험한 결과 이전 프레임에서 추적되던 차량 후보 영역이 현재 프레임에서 Haar-Adaboost가 차량 후보 영역을 검색하지 못하는 경우에 영역기반과 Kalman 예측치를 통하여 현재 프레임에서 전방차량을 연속적으로 추적하는 것을 확인하였다. 본 제안 방법은 영상을 이용한 FCW 시스템에 사용될 수 있을것으로 사료된다.

Enhanced Detection of Flaws by using Non-Destructive Testing of Air Deck (항공 갑판의 비파괴 검사를 이용한 개선된 결함 검출)

  • Hong, Dong-Jin;Chae, Byung-Joo;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.168-170
    • /
    • 2011
  • 본 논문에서는 항공 갑판의 비파괴 검사 영상에서, 조직의 이상이나 결함의 정도를 검출하는 기존의 방법보다 결함 검출의 정확도를 개선한 방법을 제안한다. 제안된 결함 검출 방법은 결함의 윤곽선을 추출하기 위하여 라플라시안 필터링 기법을 적용하여 윤곽선을 추출한다. 라플라시안 필터링 기법을 적용하여 윤곽선을 추출할 경우에는 결함 이외의 다른 객체들의 윤곽선도 검출된다. 따라서 본 논문에서는 이진화 기법과 팽창 연산을 적용하여 결함의 후보 객체들을 연결한다. 그리고 Grassfire 라벨링 기법을 적용하여 잡음을 제거하고 팽창 연산과 침식 연산을 이용하여 결함 후보 영역의 크기를 조정한다. 크기가 조정된 결함 후보 영역을 기반으로 원 영상에서 결함 후보 영역을 추출한다. 결함 후보 영역에서 결함 영역을 추출하기 위해 결함 후보 영역의 명암 대비를 증가시키고 결함 후보 영역의 주변 정보를 이용하여 이진화한다. 이진화 된 영역에서 Grassfire 라벨링 기법을 이용하여 잡음을 제거하고 최종적으로 결함 영역을 검출한다. 본 논문에서 제안한 방법으로 항공갑판의 결함을 추출한 결과, 기존의 방법보다 항공 갑판의 결함을 추출하는데 효과적인 것을 확인하였다.

  • PDF

Pre-Clustering Algorithm for Selecting Optimal Objects (최적합 객체 선정을 위한 선 클러스터링 알고리즘)

  • Jang Joo-Hyun;Roh Hi-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.901-903
    • /
    • 2005
  • 본 논문에서는 절차 중심 소프트웨어를 객체 지향 소프트웨어로 재/역공학기 위한 다단계 절차 중 객체 추출 단계에서 선 클러스터링을 통해 불필요한 정제 결합단계를 축소하고, 영역 전문가의 선택으로 영역모델링에 가장 가까운 객체 후보군을 제시하는 알고리즘을 제안하고자 한다. 기존의 연구에서는 영역 모델링과 다중 객체 후보군과의 유사도를 측정하여 영역 전문가에게 최적합 후보를 선택할 수 있는 측정 결과를 제시하였다. 하지만 영역 전문가가 제시하는 영역 모델링이 존재한다면 정제 결합단계이전에 최대한의 선 클러스터링을 통해서 영역 모델링과 가장 유사한 통합 객체를 제시할 수 있고, 정제 결합 단계를 선 클러스터링을 통해서 축소할 수 있으며 이를 통해서 객체 후보군과 영역모델링의 유사도를 향상 시키며 클러스터링에 따른 시간과 공간을 절약할 수 있다. 따라서 본 논문에서는 영역 모델링과 사용자의 함수, 전역변수의 선택을 통해 영역 모델링에 가장 유사한 객체 후보군을 찾는 선 클러스터링 알고리즘 제안 하고자 한다.

  • PDF

Multiple Car Plate Detection (다중 번호판 영역 검출)

  • 강동구;이상훈;김경현;차의영
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.361-364
    • /
    • 2002
  • 번호판 인식 시스템은 일반적으로 한 차선에 한 카메라를 사용한다. 만약 2개의 차로를 동시에 촬영하도록 카메라를 설치한다면 시스템 구축 비용이 많이 감소할 것이다. 본 논문은 이러한 시스템의 구축에 필요한 기본적인 방법으로써 이미지에서 번호판이 2개 이상 존재할 경우에도 그 위치를 모두 검출할 수 있는 방법에 대하여 제안한다. 번호판 후보 영역 추출은 모폴로지 연산을 통해 검출하고 각 후보 영역은 이진화후 제안한 검증 방법을 통해 후보 영역을 제거하고 번호판인 후보 영역에 대하여 정확한 번호판 영역을 검출한다. 제안한 검출 방법은 일반 번호판과 영업용 번호판 모두 검출할수 있다.

  • PDF

Human Eye Detection using Skin Color and Moments (피부색과 모멘트를 이용한 눈 영역 검출)

  • Seo, Duck-Won;Yun, Kug-Jin;Kim, Dae-Jung;Kwak, Hoon-Sung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2001.04a
    • /
    • pp.143-146
    • /
    • 2001
  • 본 논문에서는 칼라 영상으로부터 피부색 정보 및 모멘트를 이용하여 눈 영역 및 얼굴 영역을 검출하는 알고리즘을 제안한다. 제안한 알고리즘은 눈 영역을 추출함으로써 보다 정확한 얼굴 영역을 검출할 수 있다. 이를 위해 먼저 입력된 칼라 영상의 피부색 정보를 기반으로 추출한 영역으로부터 레이블 영역의 면적과 크기 정보를 이용해 1차, 2차 얼굴 후보 영역을 선택하고 선택된 얼굴 후보 영역간의 기울기 모멘트를 계산하여 3차 얼굴 후보 영역을 추출한다. 또한 추출한 3차 후보 영역으로부터 레이블 영역의 크기 및 구조적 관계를 고려하여 영역 내에서의 눈의 위치를 검출한다. 따라서 제안한 방법은 눈의 기울기 관계를 이용함으로써 얼굴의 크기와 얼굴이 좌우로 기울어진 영상에 대하여 강인한 얼굴 검출 능력을 보인다.

  • PDF

Face detection using heuristic knowledge and neural network (경험적 지식과 신경망을 이용한 얼굴영역 검출)

  • 서원택;조범준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.228-231
    • /
    • 2003
  • 본 논문은 그레이 영상에서의 사람얼굴 영역추출에 관해서 연구하였다. 얼굴영역 추출은 얼굴인식이나 사람과 컴퓨터의 인터페이스, 비디오 감시시스템을 연구하는데 있어서 반드시 거쳐야 하는 전처리 과정이라고 할 수 있다. 이러한 목적을 위해서 본 연구에서는 두 단계의 과정을 통해서 얼굴영역을 추출하였다. 첫 번째 단계는 사랑얼굴에 대한 경험적 지식을 이용하여 후보영역을 획득한 다음에 두 번째 단계에서 후보영역을 웨이블릿 분해 후, 신경망을 이용하여 후보영역 중에서 얼굴영역을 검증한다. 실험결과 제안한 방법은 빠르고 정확하게 얼굴영역을 검출하였다.

  • PDF

Flame Detection using Region Expansions and On-line Variances in Infrared image (적외선 영상에서 영역확장과 온라인 분산을 이용한 화염 검출)

  • Kim, Dong-Keun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1547-1556
    • /
    • 2009
  • In this paper, we propose a flame detection method using region expansions and on-line variances in outdoor infrared video sequences. To segment flame candidates' regions in infrared images, we first, extract initial regions by high threshold values in infrared images and then the segmented regions are expanded to their neighbors with similar high intensity values. The segmented regions could be non-flame areas like bare-grounds and buildings. Therefore, to detect flame regions in the segmented regions, the segmented regions which have high intensity values in infrared image, are tracked using bounding regions in frame sequences. Variances in the tracked regions are calculated effectively by on-line updates to measure intensity variations on the tracked regions. Experiments show that the proposed method, which is based on region expansions and the average of on-line variances in the regions, is efficient to detect flames in infrared image.

  • PDF

Three Step Face Region Detection Using Wavelet Packet Analysis (Wavelet Packet Analysis를 이용한 3단계 얼굴 영역 추출)

  • 안미선;송호근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.370-372
    • /
    • 2001
  • 본 논문에서는 컬러 정지 영상을 대상으로 상반신 인물 영상이 입력되었을 때, 얼굴 영역을 추출하고 검증하는 방법을 제안한다. 본 논문의 얼굴 추출과정은 1단계로 영상 내 피부색 영역을 추출한 다음, 후보 영역들에 대한 공간적 제한조건을 이용하여 1차 얼굴 후보 영역을 결정한다. 2단계에서는 얼굴 구성 요소 중 가장 두드러진 특징으로서 눈 영역을 탐색하고, 눈 영역을 기준으로 한국인의 얼굴에 대한 구조적 통계값을 적용한다. 이로서 얼굴 포함 최소 사각형 후보 영역을 결정한다. 마지막 3단계에서는 영상 내 색상 정보와 공간 정보 그리고 구조적 통계치로부터 결정된 얼굴 후보 영역에 대하여 얼굴 영역의 텍스춰(texture)를 Wavelet Packet Analysis를 이용해 조사함으로써 얼굴 영역을 확정하게 된다. 일반적으로 2단계에서 대부분의 얼굴 영역이 결정되지만 3단계에서 얼굴 내 텍스춰 정보를 활용하면 보다 적절한 얼굴 포함 사각형의 범위를 결정할 수 있었다.

  • PDF

Face Detection based on Pupil Color Distribution Maps with the Frequency under the Illumination Variance (빈도수를 고려한 눈동자색 분포맵에 기반한 조명 변화에 강건한 얼굴 검출 방법)

  • Cho, Han-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.225-232
    • /
    • 2009
  • In this paper, a new face detection method based on pupil color distribution maps with the frequency under the illumination variance is proposed. Face-like regions are first extracted by applying skin color distribution maps to a color image and then, they are reduced by using the standard deviation of chrominance components. In order to search for eye candidates effectively, the proposed method extracts eye-like regions from face-like regions by using pupil color distribution maps. Furthermore, the proposed method is able to detect eyes very well by segmenting the eye-like regions, based on a lighting compensation technique and a segmentation algorithm even though face regions are changed into dark-tone due to varying illumination conditions. Eye candidates are then detected by means of template matching method. Finally, face regions are detected by using the evaluation values of two eye candidates and a mouth. Experimental results show that the proposed method can achieve a high performance.

  • PDF