• 제목/요약/키워드: 후방압출

검색결과 66건 처리시간 0.023초

ILM 공법에 의해 시공된 2경간 구조물의 해석 (Analysis of Two-Span Structures Constructed by Incremental Launching Method)

  • 김성훈;김부규;최준혁
    • 한국강구조학회 논문집
    • /
    • 제28권1호
    • /
    • pp.35-42
    • /
    • 2016
  • 본 연구는 기존의 시설물을 횡단하기 위한 목적으로 시공된 지간장이 다른 2경간 연속 구조물을 대한 압출공법을 적용에 관한 것이다. 압출구간이 비교적 짧은 구조물은 인접 경간의 길이가 다른 경우가 많고 압출시 후방 구조물이 연속되지 않는 경우가 많기 때문에 부재 단면력이 최대 내력에 도달하기 이전에 과도한 처짐과 전도가 발생하여 구조적 안정성이 확보되지 못하는 경우가 있다. 이러한 구조물의 시공단계별 구조물의 처짐과 전도에 대한 안정성을 예측하기 위해서 해석적 연구를 수행하였다. 해석에서의 매개변수는 압출추진코와 상부구조물의 길이비, 지간비, 중량비 등이다.해석결과로부터 매개변수의 영향을 분석하였고 압출추진코에서의 구조물의 처짐과 전도 발생 조건식을 제시하였다.

중공 T형상의 형단조에 관한 연구 (A Study on Die Forging of a Hollow T-shaped Part)

  • 김현수;김용조
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.32-39
    • /
    • 2004
  • Traditional forging of a hollow T-shaped part has been applied to forge a solid T-shaped product from a solid billet and then to machine the hollow in that. In a case, a hollow T-shaped part can be forged by backward-extruding from a solid billet. In this study, four types of forging were suggested for manufacture of hollow T-shaped parts. Forging simulations for each of these forging methods were carried out to investigate folding defect, metal flow pattern, effective strain, and forging loads. Experimental works were carried out to be compared with the simulation results. Here, the ratio of the thickness of the hollow tube to that of the flange was selected to investigate a forging defect like folding.

유한요소 해석을 통한 피스톤 분말단조 공정의 특성 분석 (Characteristic Analysis of Powder Forging Processes for Engine Pistons by Finite Element Analysis)

  • 조진래;주영신;김영호
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.2042-2049
    • /
    • 2000
  • This paper is concerned with the comparison of forging characteristics between forward and backward processes, through the three-dimensional finite element simulation, for the aluminum powder forging of engine pistons. Starting from the theoretical formulation of velocity and temperature fields in the sintered preform during the process, we examine the comparative distributions of relative density, effective stress and temperature as well as the variations of total forging load and total volume reduction. Through the comparative results, we find out that the forward method provides better forging characteristics than the backward method.

유동제어에 의한 피스톤 핀의 전${\cdot}$후방압출 공정 개발 (Forward-Backward Extrusion Process Development of Piston-Pin by Flow Control)

  • 박종남;박태준;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 제4회 압출 및 인발가공 심포지엄
    • /
    • pp.1-12
    • /
    • 2001
  • In cold forging of piston-pin for automobile parts, the flow defect appears by the dead metal zone. This appearance evidently happens in products with a thin piercing thickness for the dimension accuracy and the decrease of material loss. The best method that can prevent flow defect is removing dead metal zone. The purpose of this study is to investigate the material flow behavior of forward-backward extruded piston-pin through the relative velocity ratio and the stroke control of upper moving punch & container using the flow control forming technique. The finite element simulations are applied to analyse the flow defect, then the results are compared with the plasticine model material experiments. Finally, the model experiment results are in good agreement with the FE simulation ones.

  • PDF

반용융 재료의 물성치 평가에 관한 연구(I) -후방압출의 상계해석을 위한 동적 가용 속도장의 제안- (A Study on Material Characterization of Semi-Solid Materials (I) -Proposal of New Velocity Field for Upper Bound Analysis of Backward Extrusion-)

  • 이주영;김낙수
    • 소성∙가공
    • /
    • 제8권4호
    • /
    • pp.364-373
    • /
    • 1999
  • For material characterization of semi-solid materials, backward extrusion process, which has been used in forming of hollow-sectioned products, was analyzed by the upper bound analysis in the current study. The existing kinematically admissible velocity field was applied to steady state at which there was no change in the assumed regions of velocity field. For unsteady state, new velocity field, as a function of dead zone angle, was proposed. Through the whole analysis, fiction between die and workpiece was also considered. It has been studied how the process variables, such as friction factor and punch velocity, and material parameters, such as strength coefficient, strain rate sensitivity could affect on analysis results. Finally, by the comparison with the finite element analysis, the reliability and efficiency of the proposed velocity field were discussed.

  • PDF

열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석 (Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF

강소성 유한요소법을 이용한 냉간단조 금형 및 가공 공정 해석 (The Simulation of Dies and Forming Processes for Clod Forging by Using Rigid-Plastic Finite Element Analysis)

  • 이낙규;윤정호;양동열
    • 대한기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.1070-1081
    • /
    • 1989
  • 본 논문의 목적은 일반적인 곡면을 갖는 냉간단조 공정을 컴퓨터 시뮬레이션 을 통해 해석하고자 강소성 유한요소법의 프로그램을 개발하고, 이를 축대칭 및 평면 변형 단조성형에 적용하고자 한다. 축대칭 문제로는 산업적으로 이용이 많은 치차 블랭크(gear blank) 형태의 예제를 선택하였고 평면변형으 경우 정밀 단조품의 하나인 터어빈 블레이드(turbine blade)를 평면변형 문제로 보아 해석하였다. 한편 심한 변형을 하는 후방압출과 같은 문제의 수렴성을 향상시키고 공정을 계속적으로 해석하 기 위하여 격자 재구성기법을 도입함으로서 냉간단조 문제의 일반적인 해석을 하도록 한다.

등속조인트 하우징의 냉간단조 공정설계 (Process Sequence Design in Cold Forging of Constant Velocity Joint Housing)

  • 이진희;강범수;김병민
    • 대한기계학회논문집
    • /
    • 제18권9호
    • /
    • pp.2234-2244
    • /
    • 1994
  • A process sequence of multi-operation cold forging for actual application in industry is designed with the rigid-plastic finite element method to form a constant velocity joint housing(CVJ housing). The material flow during the CVJ housing forming is axisymmetric until the final forging process for forming of ball grooves. This study treats the deformation as an axisymmetric case. The main objective of the process sequence design is to obtain preforms which satisfy the design criteria of near-net-shape product requiring less machining after forming. The process sequence design also investigates velocity distributions, effective strain distributions and forging loads, which are useful information in the real process design.

후방압출 공정에서 금형과 제품의 변형관계 (Relation of Deformation between Die and Product in Backward extrusion)

  • 박태식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.83-87
    • /
    • 2000
  • The die for cold forging gets a ver high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain a product with highly accurate dimension therefore it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between a die and a product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion which can be applied in the die design for the product with accurate dimension

  • PDF

동적재료모델을 활용한 열간 후방압출된 Ti-6Al-4V튜브의 성형결함 해석 (Assessment of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tubes using Dynamic Materials Model)

  • 염종택;심인규;박노광;홍성석;심인옥
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.566-571
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. Dynamic material model(DMM) including Ziegler's instability criterion was employed to predict the forming defects such as shear band, inner and/or surface cracks. This approach was coupled to the internal variables generated from FE analysis. The simulation results fur the backward extrusion were compared with the experimental observation. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The formation of forming defects in the extruded tube was attributed to non-uniform distribution of strain, strain rate and temperatures in the extruded tubes for the given test conditions.