• Title/Summary/Keyword: 후방산란기법

Search Result 33, Processing Time 0.018 seconds

Water resources monitoring technique using multi-source satellite image data fusion (다종 위성영상 자료 융합 기반 수자원 모니터링 기술 개발)

  • Lee, Seulchan;Kim, Wanyub;Cho, Seongkeun;Jeon, Hyunho;Choi, Minhae
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.497-508
    • /
    • 2023
  • Agricultural reservoirs are crucial structures for water resources monitoring especially in Korea where the resources are seasonally unevenly distributed. Optical and Synthetic Aperture Radar (SAR) satellites, being utilized as tools for monitoring the reservoirs, have unique limitations in that optical sensors are sensitive to weather conditions and SAR sensors are sensitive to noises and multiple scattering over dense vegetations. In this study, we tried to improve water body detection accuracy through optical-SAR data fusion, and quantitatively analyze the complementary effects. We first detected water bodies at Edong, Cheontae reservoir using the Compact Advanced Satellite 500(CAS500), Kompsat-3/3A, and Sentinel-2 derived Normalized Difference Water Index (NDWI), and SAR backscattering coefficient from Sentinel-1 by K-means clustering technique. After that, the improvements in accuracies were analyzed by applying K-means clustering to the 2-D grid space consists of NDWI and SAR. Kompsat-3/3A was found to have the best accuracy (0.98 at both reservoirs), followed by Sentinel-2(0.83 at Edong, 0.97 at Cheontae), Sentinel-1(both 0.93), and CAS500(0.69, 0.78). By applying K-means clustering to the 2-D space at Cheontae reservoir, accuracy of CAS500 was improved around 22%(resulting accuracy: 0.95) with improve in precision (85%) and degradation in recall (14%). Precision of Kompsat-3A (Sentinel-2) was improved 3%(5%), and recall was degraded 4%(7%). More precise water resources monitoring is expected to be possible with developments of high-resolution SAR satellites including CAS500-5, developments of image fusion and water body detection techniques.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification (Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지)

  • Park, Sungjae;Eom, Jinah;Ko, Bokyun;Park, Jeong-Won;Lee, Chang-Wook
    • Journal of the Korean earth science society
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2020
  • Cheonji, the largest caldera lake in Asia, is located at the summit of Baekdu Mountain. Cheonji is covered with snow and ice for about six months of the year due to its high altitude and its surrounding environment. Since most of the sources of water are from groundwater, the water temperature is closely related to the volcanic activity. However, in the 2000s, many volcanic activities have been monitored on the mountain. In this study, we analyzed the dimension of ice produced during winter in Baekdu Mountain using Sentinel-1 satellite image data provided by the European Space Agency (ESA). In order to calculate the dimension of ice from the backscatter image of the Sentinel-1 satellite, 20 Gray-Level Co-occurrence Matrix (GLCM) layers were generated from two polarization images using texture analysis. The method used in calculating the area was utilized with the Support Vector Machine (SVM) algorithm to classify the GLCM layer which is to calculate the dimension of ice in the image. Also, the calculated area was correlated with temperature data obtained from Samjiyeon weather station. This study could be used as a basis for suggesting an alternative to the new method of calculating the area of ice before using a long-term time series analysis on a full scale.