• Title/Summary/Keyword: 후기 화성활동

Search Result 32, Processing Time 0.025 seconds

Age Distribution of the Jurassic Plutons in Korean Peninsula (한반도 쥬라기 심성암의 연령분포)

  • Park, Kye-Hun;Kim, Myong-Jung;Yang, Yun-Seok;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.269-281
    • /
    • 2010
  • The compiled recent precise age data for the plutonic intrusions of Korean peninsula display that the Jurassic igneous activities occurred on the Yeongnam massif since ca. 200 Ma close to the boundary between Triassic and Jurassic. Since then the igneous activities propagated toward further north through time. The Jurassic igneous activities over the Okcheon belt and its vicinity areas began at about 180 Ma when igneous activities of the Yeongnam massif had been almost over. The igneous activities within the Gyeonggi massif located further north started at somewhat later period ca. 170 Ma. Jurassic igneous activities over the Okcheon belt and its vicinity areas ended a little earlier than the Gyeonggi massif area. Such timing differences upon geographic positions within the Korean peninsula seem to reflect variations in distance to the trench, in the direction of subduction, and/or in subduction angle. Therefore precise understanding of the variations in emplacement ages of Jurassic plutons within Korean peninsula can be a important clue to reconstruct the paleogeography and tectonic environment of the northeast Asia during the Jurassic.

Review of Radiometric Ages for Phanerozoic Granitoids in Southern Korean Peninsula (남한 지역 현생 화강암류의 연대측정 결과 정리)

  • Cheong, Chang-Sik;Kim, Nam-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.173-192
    • /
    • 2012
  • Previous age data were reviewed for 98 sites of Phanerozoic granitoids in the southern part of the Korean Peninsula. Subduction-related granitic magmatism has occurred in southeastern Korea since Early Permian. In the middle part of the Yeongnam massif, arc-related tonalites, trondhjemites, granodiorites, and monzonites were emplaced during Early Triassic. After Middle Triassic continental collision in central Korean Peninsula, post-collisional shoshonitic and high-K series and A-type granitoids were emplaced in the southwestern Gyeonggi massif and central Okcheon belt during Late Triassic. Early Jurassic calc-alkaline granitoids are mostly distributed in the middle part of the Yeongnam massif and Mt. Seorak area, northeastern Gyeonggi massif. On the other hand, Middle Jurassic calc-alkaline granitoids pervasively occur in the Okcheon belt and central Gyeonggi massif. This selective distribution could be attributed to the change in the position of trench, subduction angle, or the direction of subduction. Most Cretaceous and Paleogene granitoids are distributed in the Gyeongsang basin, with the latter emplaced exclusively along the eastern coastline. Outside the Gyeongsang basin, Cretaceous granitoids emplaced in relatively shallow depth occur in the Gyeonggi massif and central Okcheon belt.

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization (한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로)

  • Choi, Seon-Gyu;Kang, Jeonggeuk;Lee, Jong Hyun
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.323-336
    • /
    • 2019
  • The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

이온현미분석기를 사용한 남서부 경기육괴 변성암류의 U-Pb 저어콘 연대: 남중국지괴와의 대비 가능성

  • 조문섭
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.141-142
    • /
    • 2001
  • 남서부 경기육괴의 편마암류로부터 분리된 저어콘(zircon) 입자를 대상으로, 이온현미분석기(ion microprobe)를 사용한 U-Pb 연대를 구하였다. 그 결과는 후기 원생대(약 820 Ma) 뿐만 아니라 오르도비스기에 상당한 화성활동이 한반도에 있었음을 지시한다. 우리 나라 후기 원생대의 화성-변성 활동에 대해 알려져 있는 바는 극히 제한적이어서 후속연구가 필수적이며, 이러한 연구는 한반도의 지체구조적 변천사를 로디니아 초대륙(Rodinia supercontinent)의 생성-분리와 관련해 재조명할 수 있는 기회를 제공할 것이다. 또한 오르도비스기의 화성작용은 그동안 논란이 되어 왔던 소위 “칼레도니아(Caledonian)” 변동 (cf. 조문섭, 2000)에 대한 또 다른 증거를 제공해준다. 저어콘의 연대측정은 서호주의 커튼공업대학교에 설치되어 있는 SHRIMP-II(Sensitive High-Resolution Ion Microprobe-II; 고감도-고분해능 이온현미분석기)를 사용하였으며, 시료 준비 및 분석방법은 기존에 보고된 바와 같다 (e.g., Kinny et al., 1999). 분석된 3개의 암석 시료(1006-5, 8, 9)는 경기육괴의 남서부에 위치한 홍성 지역의 정편마암들이다. 1006-8 시료는 Turek and Kim (1996)이 전통적인 방법을 사용해 687$\pm$5 Ma의 U-Pb 저어콘 연대를 보고한 바 있는 화강암질 편마암 (시료번호, KJ43)에 해당된다. 두 개의 다른 시료는 1006-8 주변에서 산출하는 전형적인 경기육괴의 편마암류로서 화강암질 정편마암이다. 이들 시료로부터 분리된 저어콘 입자들은 대부분 화성기원의 누대구조와 자형의 결정형태를 보여준다. 과성장띠(overgrouth rims)는 1006-5 시료에서 흔하게, 그리고 1006-9 시료에서 매우 드물게 관찰된다. 음극선발광(cathodoluminescence) 영상의 해석을 통해 저어콘 결정의 성장사를 유추하였으며, 이를 바탕으로 이온현미분석 점(spot)을 정하였다. U-Pb-Th 자료는 퍼스(Perth) 저어콘 스탠다드 (CZ3, 564 Ma, $^{206}$Pb/$^{238}$U=0.0914)를 사용하였다. 아래에 기술하는 연대는 모두 $^{206}$Pb/$^{238}$U 연대에 해당된다. 두 개의 화강암질 편마암 시료로부터 구한 U-Pb 저어콘 연대는 각각 812 $\pm$ 14 Ma(1006-8)와 822 $\pm$ 17 Ma(1006-9)로 분석오차 내에서 서로 일치한다. 이 결과는 춘천 및 전곡 지역의 석류석 각섬암에서 보고된 Sm-Nd 전암연대(852 $\pm$ 24 Ma 및 824 $\pm$ 143 Ma; Lee and Cho, 1995; Ree et al., 1996)와 잘 부합한다. 따라서 후기 원생대 기간 중 화성활동이 한반도에서 광범위하게 일어났음을 시사한다. 한편, 1006-9 시료에서는 예외적으로 한 개의 저어콘 입자 주변부(rim)에서 매우 얇은 과성장띠가 관찰되었으며, 두 개의 점 분석으로부터 구한 U-Pb 저어콘 연대는 약 235 Ma이다. 이 띠는 또한 변성기원의 저어콘에서 흔히 관찰되는 작은 W (<0.05) 비를 보인다. 1006-5 시료는 위 두 시료로부터 수 km 떨어진 지점에서 채집하였으나, 저어콘 연대는 상이한 기록을 보여준다. 즉 매우 작은 Th/U (<0.01) 값을 갖는 저어콘의 주변부에서 223 $\pm$ 5 Ma의 연대가 잘 정의되며, 이는 1006-9 시료에서 관찰된 결과와 함께 트라이아스기의 고온변성작용이 백립암상에 가까운, 매우 높은 온도에 달하였음을 지시한다. 한편 저어콘의 중심부는 335-473 Ma의 비교적 넓은 연대 분포를 보인다. 이는 저어콘이 실제 성장한 연대를 지시하기보다는 트라이아스기의 변성작용에 따른 납손실(Pb loss) 그리고 누대 규모보다 더 큰 빔 크기(beam size, 약 30 $\mu\textrm{m}$)의 영향일 것으로 해석된다. 또한 저어콘이 다양한 외래물질로부터 기원했다는 증거가 관찰되지 않으므로, 이 정편마암의 모암은 오르도비스기(약 430-470 Ma)에 관입하였을 것으로 생각된다. 따라서 그동안 논란이 되어 왔던 소위 “칼레도니아” 변동이 한반도 내에 실존하였을 가능성을 시사한다. 이상의 결과를 종합하여 볼 때, 경기육괴의 변성암류는 후기 원생대 이후 다양한 저어콘의 성장사를 기록하고 있음을 알 수 있다: 즉 (1) 후기원생대(약 820 Ma)의 화성작용; (2) 오르도비스기(약 450 Ma)의 화성작용: 그리고 (3) 트라이아스기 (약 223 Ma)의 부분용융을 수반한 고온 변성작용으로 대표된다. 이러한 지질연대는, 옥천변성대에서 얻어진 756 Ma의 저어콘 연대(Lee et al., 1998)와 더불어, 친링-다비-수루(Qinling-Dabie-Sulu) 대륙 충돌대와 양쯔 지괴에서 보고된 지질연대 결과와 잘 부합한다. 따라서 지구연대학적으로 경기육괴가 북중국보다는 대륙충돌대를 포함하는 남중국지괴에 속할 것으로 결론지을 수 있다.

  • PDF

Major Molybdenum Mineralization and Igneous Activity, South Korea (남한의 주요 몰리브덴 광화작용과 화성활동)

  • Choi, Seon-Gyu;Koo, Min-Ho;Kang, Heung-Suk;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.44 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The major Mo deposits in South Korea were formed during the Jurassic Daebo orogeny, the Late Cretaceous and the Tertiary post-orogenic igneous activities, and are characterized by a variety of genetic types such as pegmatite, greisen, skarn, porphyry and vein types. The Jangsu mine is a pegmatite-style deposit which is genetically related to the Jurassic ilmenite-series two-mica granite with the Mo mineralization age of $159.6{\pm}4.5$ Ma. The Geumseong mine occurs as a skarn/porphyry-style deposit associated with highly fractionated granite. Its age of Mo mineralization within aplitic cupola is about 96.5~l07.5 Ma. The Yeonil mine is a porphyry-style deposit, and the Geumeum mine is a veinlet-style deposit along the fracture zone with their mineralization ages of $58.4{\pm}1.6$ and $54.4{\pm}1.2$ Ma, respectively. The contrasts in the style of Mo mineralization in Korea reflect the different environment of the related magmatism. The Jurassic mineralization, being related to deep-seated granitoids, occurs as a pegmatite-style deposit, whereas the Cretaceous one, being related to subvolcanic granitoids, occurs as skarn/porphyry/vein-type ore deposits. The Tertiary Mo mineralization has a close relationship with the igneous activities associated with the Tertiary basin formation along the east coast, Korean peninsular.

A Preliminary Study on the Post-magmatic Activities Occurring at the Gonamsan Gabbroic Rocks in the Pocheon Area (포천지역 고남산 반려암질암 내 발생하는 후기 화성활동에 관한 예비 연구)

  • Lee, Ji-Hyun;Kim, Eui-Jun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.77-95
    • /
    • 2022
  • The Gonamsan gabbroic complex in the Pocheon area, northwestern region of South Korea consists of a variety types of gabbroic rocks and associated Fe-Ti oxide deposits caused by magmatic differentiation. Post-magmatic intrusions (i.e., gabbroic pegmatite and pyroxene-apatite-zircon rocks) partly intruded into the gabbroic rocks. The gabbroic pegmatite occurs in monzodiorite and oxide gabbro of the complex, intimately and spatially associated with high-grade lenticular Fe-Ti oxide mineralization. The pegmatite can be subdivided into plagioclase-amphibole and pyroxene-olivine pegmatite, in which the contact surface is sharp. The plagioclase-amphibole pegmatite comprises plagioclase and amphibole, with lesser amount of pyroxene, ilmenite, sphene, apatite, and biotite. The pegmatite shows plagioclase-amphibole intergranular texture, in which the open space formed by large plagioclase laths (An2-26Ab72-98Or0-2) are infilled by amphibole. The pyroxene-olivine pegmatite is dark gray to black in color and also contains magnetite, ilmenite, spinel, apatite, and calcite as a minor component. The pyroxene (En35-36Fs8-9Wo55) and olivine (Fo84-85Fa15-16) partly show a poikilitic texture defined by smaller euhedral olivine enclosed by coarser clinopyroxene. Fe-Ti oxide minerals consist mainly of magnetite and ilmenite that are found interstitially to earlier formed silicates. Subsequently, they are encompassed by reaction rim (almost of amphibole and biotite) along the boundary with surrounding silicate minerals. Under the microscope, magnetite contains a lot of oxyexsolved ilmenite (trellis type) and spinel, and thereby is weakly enriched in magnetite-compatible elements such as Ti, Al, Mg, and V. The structure and textures at the contact zone as well as mineralogical disequilibrium between gabbroic pegmatite and the host gabbroic rocks suggest that the pegmatite may form as a result of accumulation from Fe-rich melt (or liquid) that occurred somewhere rather than in situ form from the host gabbroic rock during the magmatic differentiation. Consequently, the preliminary study suggests that further study on the post-magmatic activities can not only help us improve our understanding on magmatic fractionation but also provide critical information on Fe-Ti oxide mineralization in gabbroic rocks resulting from the magmatic differentiation.

Characteristics of Nd Isotopic Compositions of the Phanerozoic Granitoids of Korea and Their Genetic Significance (한국 현생 화강암류의 Nd 동위원소 조성 특성과 성인적 의미)

  • Park, Kye-Hun;Lee, Tae-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.279-292
    • /
    • 2014
  • Nd isotopic compositions analyzed from the Phanerozoic granitoids of Korea are integrated and discussed. Variations in Nd isotopic compositions can be explained either by temporal trend or by regional differences. Among the three active periods, first two periods during the Permian-Triassic and Jurassic seem to show variations from rather high ${\varepsilon}_{Nd}(t)$ values at the beginning to lower ${\varepsilon}_{Nd}(t)$ values during the later stages. Such trends probably reflect melting of the subducting oceanic crust and producing magma with higher proportion of depleted mantle derived materials during the early stage of subduction process, and subsequent magmas with greater proportion of old continental crust with progress of subduction. However, the Cretaceous-Paleogene period of active magmatism displays higher ${\varepsilon}_{Nd}(t)$ values during the advanced stage of the igneous activities, which is opposite to the previous active periods. The other explanation is that such differences in ${\varepsilon}_{Nd}(t)$ reflect regional differences, based on the observations that such high-${\varepsilon}_{Nd}(t)$ granitoids distribute in the northeastern Gyeongbuk Province and Gyeongsang Basin. If this is the case, the regions with highr ${\varepsilon}_{Nd}(t)$ values may have distinct crustal evolution histories, e.g. younger average age. The choice between the two hypothesis could be made through further studies.

Tectonics of the south Shetland Islands and Geology of king George Island: A Review (남쉐틀랜드군도의 지체구조 및 킹죠지섬의 지질)

  • 이민성;박병권
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.74-83
    • /
    • 1990
  • The similarity in Mesozoic geology between the Antarctic Peninsula and South America indicates the possibility that they had situated along the same tectonics line before the separation of southwestern Gondwanaland. The igneous activity around the Antarctic Peninsula, including the South Shetland islands, can be correlated with the South American Cordillera Orogeny due to the subduction of Farallon/Phoenix plate until late Mesozoic. However igneous activity in Tertiary correlates with the tectonics movement accompanying the formations of Drake passage and Scotian sea. The south Shetland islands form a Jurassic-Quaternary miasmatic island arc on the sialic basement of schist and deformed sedimentary rocks. Forming of the South Shetland Islands arc began during the latest Jurassic or earliest Cretaceous from the southwestern part of the archipelago. The igneous activity migrated northeasterly and continued in most areas until late Tertiary. The entire arc-forming period, between late Jurassic and late tertiary times, was characterized by emplacement and eruption of magmas of intermediate between island-arc tholeiite and calc-alkaline types. However, Quaternary volcanic rocks show strong alkaline affinities which corresponds to the switch from compressional to intra: plate tensional tectonics. The rocks of late Cretaceous to Tertiary, mainly found in King George Island, consist of lava of basalt to andesite and intercalated pyroclastic rocks. Some of the volcanic rocks, which ofter called quartz-pyrite lodes'are severely altered and include much content of calcite,silica and pyrite.The stratographic succession of King George Island can be divided into two formation:Fields formation and Hennequin formation.The Fildes formation crops out at the west side of Admiralty Bay n King George Island,while the Hennequin formation at the east side of the bay.These two formtions are thought to be formed contempiranceously.The Fildes formation consists of altered olivine-basalt and basaltic andestie, whereas the Hennequin formation consists of fine-grained hypersthene-augite-andesite.Both formations interclate pyroclastic rocks.

  • PDF

K-Ar ages of the hydrothermal clay deposits and the surrounding igneous rocks in southwest Korea (한국 남서부의 열수점토광상과 주변암에 대한 K-Ar 연대 측정)

  • Kim In Joon;Nagao Keisuke
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.58-70
    • /
    • 1992
  • From the K-Ar age determinations for the clay deposits and their surrounded rocks in southwest Korea, the ages of the ore formation in all clay deposits fall in very narrow range from 78.1 to 81.4 Ma. K-Ar ages of clay deposits are slightly younger than those of the Cretaceous volcanic rocks (Hwangsan Formation, 81.4 to 86.4 Ma) and are slightly older than those of the Cretaceous granitic rocks (77.1 to 81.5 Ma). These results indicate that clay deposits were formed with genetical relation to late Cretaceous felsic magmatism. Weolgagsan granite, which has been previously considered to be Cretaceous, is proved to be formed its age in Jurassic (140.9 and 144.8 Ma). The close relationships of K-Ar ages between the clay deposits and Cretaceous granitic rocks suggest that the clay deposits were formed during the hydrothermal alterations caused by the thermal effects (hydrothermal circulation) of the granitic intrusions rather than by the hydrothermal activities associated with volcanic activities.

  • PDF

Interpretation of geological structures and stratigraphy around the Kita-Yamato Bank in the East Sea (동해 키타-야마토 뱅크 주변 해역의 지질구조 및 퇴적층서 해석)

  • Huh Sik;Yoo Hai Soo;Park Chan Hong;Han Sang Joon;Jou Hyeong Tae
    • The Korean Journal of Petroleum Geology
    • /
    • v.9 no.1_2 s.10
    • /
    • pp.16-23
    • /
    • 2001
  • The study area in the East Sea is located on the northeastern margins of the Ulleung Basin near the Kita-Yamato Bank. The research area provides the important clue to the development of Miocene basins which are characterized by the normal faults and volcanic activities related to rifting in the continental crust. Kita-Yamato Bank is a small sediment-filled graben which was formed by failed rifting in the Early Miocene. The basins rapidly vary the bathymetry, depth of acoustic basement and thickness of sedimentary layer. The tension in the study area caused the extensional lithospheric deformation before/during the Early Miocene. In consequence, tectonic forces resulted in the depression or subsidence of basement from continental rifting in the Kita-Yamato Bank followed by the opening of the Ulleung Basin, and caused the onset of graben or half-graben structure bounded by large blocked syn-rift faults. Afterward no significant tectonic deformation exists, with the consequence that post-rift normal faults with small heave were formed and reactivated by the resultant forces such as tectonic subsidence, sediment loading and volcanic activity. The Cenozoic sediment layer has a maximum thickness of 1.0 s along the center of the graben or half-graben, which overlies the consolidated acoustic basement. Seismic units V and IV supposed to be syn-rift sedimentary rocks are deformed by both the volcanic activities and numerous basement-involved normal faults induced from extension. In the uppermost layer, slump scars resulted from the slope failure are recognized.

  • PDF