DOI QR코드

DOI QR Code

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization

한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로

  • Choi, Seon-Gyu (Department of Earth and Environmental Sciences, Korea University) ;
  • Kang, Jeonggeuk (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Jong Hyun (Department of Earth and Environmental Sciences, Korea University)
  • 최선규 (고려대학교 지구환경과학과) ;
  • 강정극 (고려대학교 지구환경과학과) ;
  • 이종현 (고려대학교 지구환경과학과)
  • Received : 2019.07.09
  • Accepted : 2019.09.30
  • Published : 2019.10.28

Abstract

The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.

한반도에서 중생대 화성활동은 주로 트라이아스기 후-충돌대형, 쥐라기 조산대형 그리고 후기 백악기 후-조산대형 화성활동으로 대표되며, 각 지질시대별 광화작용의 다양성은 마그마의 지화학적 특성과 함께 정치 심도의 차별성에서 유도된 서로 다른 지열수계로부터 발생하게 되었다. 백악기 금속광화작용은 후-조산대형 천부 화성활동과 관련된 약 115~45 Ma(주 광화기; 약 100~60 Ma)의 광범위한 기간에 걸쳐서 진행되었으며, 대부분 금속광상은 소규모 암주형 화강암체를 따라 집중되는 공간적 배태양상을 보인다. 경기육괴와 영남육괴에서 후기 백악기 금속광상은 전반적으로 공주-음성 단층계와 영동-광주 단층계 및 경상분지의 경계부를 따라 분포하며, 대부분 원지성 천열수~중열수 Au-Ag 맥상 광상 또는 점이성 중열수 Zn-Pb-Cu 맥상 광상으로 산출되고 있다. 반면에 태백산분지, 옥천대 및 경상분지에서는 스카른형, 탄산염교대형, 열수충진형 맥상, 반암형, 각력 파이프형, 칼린형 광상과 같은 다양한 광상 유형으로부터 상이한 금속종이 산출되고 있다. 후기 백악기 금속광화작용은 지역에 따라 광화유체의 유동성 차이뿐만 아니라, 관계 화강암의 근접성 차이에서 나타나는 침전 환경의 차별성으로부터 다양한 광상유형 및 광종이 유도되었다. 백악기 광상 유형의 다양성은 근본적으로 관계화성암의 분화도 및 산화도와 같은 지화학적 특성에 따라 좌우되지만, 광화유체는 전반적으로 중간황형~저황형(intermediate~low sulfidation) 열수의 진화 특성을 보인다.

Keywords

References

  1. Cerny, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. Canadian Mineralogist, v.43, p.2005-2026. https://doi.org/10.2113/gscanmin.43.6.2005
  2. Cheong, C.S., Kwon, S.T. and Sagong, H. (2002) Geochemical and Sr-Nd-Pb isotopic investigation of Triassic grnitoids and basement rocks in the northern Gyeongsang Basin, Korea: Implications for the young basement in the east Asian continental margin. Island Arc, v.11, p.25-44. https://doi.org/10.1046/j.1440-1738.2002.00356.x
  3. Choi, S.-G. and Pak, S.J. (2007) The origin and evolution of the Mesozoic ore-forming fluids in South Korea: Their genetic implications. Econ. Env. Geol., v.40, p.517-535.
  4. Choi, S.-G., Kwon, S.-T., Lee, J.-H., So, C.S. and Pak, S.J. (2005a) Origin of Mesozoic gold deposits in South Korea. Island Arc, v.14, p.102-114. https://doi.org/10.1111/j.1440-1738.2005.00459.x
  5. Choi, S.-G., Ryu, I.-C., Pak, S.J., Wee, S.M., Kim, C.S. and Park, M.E. (2005b) Cretaceous epithermal gold-silver mineralization and geodynamic environment, Korea. Ore Geol. Review, v.26, p.115-135. https://doi.org/10.1016/j.oregeorev.2004.10.005
  6. Choi, S.-G., Pak, S.J., Kim, C.S., Ryu, I.-C. and Wee, S.M. (2006a) The origin and evolution of mineralizing fluids in the Cretaceous Gyeongsang Basin, southeastern Korea. Jour. Geochem. Explor., v.89, p.61-64. https://doi.org/10.1016/j.gexplo.2005.12.009
  7. Choi, S.-G., Pak, S.J., Kim, S.W., Kim, C.S. and Oh, C.-W. (2006b) Mesozoic gold-silver mineralization in south Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Env. Geol., v.39, p.567-581.
  8. Choi, S.-G., Park, J.W., Seo, J., Kim, C.S., Shin, J.-K., Kim, N.H., Yoo, I.K. Lee, J.Y. and Ahn, Y.-H. (2007) Hidden porphyry-related ore potential of the Geumseong Mo deposit and its genetic environment. Econ. Env. Geol., v.40, p.1-14.
  9. Choi, S.-G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009a) Re-evaluation of Genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Env. Geol., v.42, p.301-314.
  10. Choi, S.G., Rajesh, V.J., Seo, J., Park, J.W., Oh, C.W., Pak, S.J. and Kim, S.W. (2009b) Petrology, geochronology and tectonic implications of Mesozoic high Ba-Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc, v.18, p.266-281. https://doi.org/10.1111/j.1440-1738.2008.00622.x
  11. Choi, S.-G., Koo, M.-H., Kang, H.-S. and Ahn, Y.H. (2011) Major molybdenum mineralization and igneous activity, south Korea. Econ. Env. Geol., v.44, p.109-122. https://doi.org/10.9719/EEG.2011.44.2.109
  12. Cho, D.R. and Kwon, S.T. (1994) Hornblende geobarometry of the Mesozoic granitoids in South Korea and the evolution of the crustal thickness. Jour. Geol. Soc. Korea, v.30, p.41-61.
  13. Chough, S.K., Kown, S.T., Ree, J.H. and Choi, D.K. (2000) Tectonic and sedimentary evolution of the Korea peninsula: a review and new view. Earth Sci. Rev. v.52, p.175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  14. Corbett, G.J. and Leach, T.M. (1998) Southwest Pacific Rim gold-copper systems: Structure, alteration and mineralization. Rev. in Econ. Geol., 6, 235p.
  15. Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarn deposits. Econ. Geol., 75th Anniversary Volume, p.317-391.
  16. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothemal syatems: Transitions from porphyry to epithermal environments. p.285-313. In: Simmons, S.F. and Graham, I, eds Volcanic, geothermal, and oreforming fluids: Rulers and witnesses of processes within the Earth. Special Pub. in Econ. Geol. v.10, 343p.
  17. Hong, S.S. (2001) Implication for the emplacement depth of granites in the Yeongnam Massif, using the aluminum-in-hornblende barometry. Jour. Petro. Soc. Korea, v.10, p.36-55.
  18. Hong, S.S. and Cho, D.R. (2003) Late mesozoic-Cenozoic tectonic evolution of Korea (3). KIGAM, KR-03-01, p.455-526.
  19. Jin, M.S., Lee, Y.S. and Ishihara, S. (2001) Granitoids and their magnetic susceptibility in South Korea. Resource Geol. v.51, p.189-204. https://doi.org/10.1111/j.1751-3928.2001.tb00091.x
  20. Jwa, Y.J. (1998) Temporal, spatial and geochemical discriminations of granitoids in south Korea. Resource Geol., v.47, p.273-284. https://doi.org/10.1111/j.1751-3928.1998.tb00024.x
  21. Jwa, Y.-J. (2004) Possible source rocks of Mesozoicgranites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh, v.95, p.181-195. https://doi.org/10.1017/S0263593300001000
  22. Kang, J., Choi, S-G, Seo, J., Kim, S.-T. Kim, G., Lee, J. and Kim, C.S. (2018) Skarn evolution of a giant Sangdong W-Mo deposit, South Korea. 15th IAGOD, Argentina Salta, p.86-87.
  23. Kim, G.B., Choi, S.-G., Seo, J., Kim, C.S., Kim, J. and Koo, M. (2017) Mineralogy, Geochemistry, and Evolution of the Mn-Fe Phosphate Minerals within the Pegmatite in Cheolwon, Gyeonggi Massif. Econ. Env. Geol., v.50, p.181-193. https://doi.org/10.9719/EEG.2017.50.3.181
  24. Kim, N., Cheong, C.S., Yi, K., Jeong, Y.J. and Koh, S.M. (2016) Post-collisional carbonatite-hosted rare earth element mineralization in the Hongcheon area, central Gyeonggi massif, Korea: Ion microprobe monazite U-Th-Pb geochronology and Nd-Sr isotope geochemistry. Ore Geology Reviews, v.79, p.78-87. https://doi.org/10.1016/j.oregeorev.2016.05.016
  25. Kim, O.J. (1971a) Study on the intrusion epochs of younger granite and their bearing orogenesis in South Korea. Jour. Korean Inst. Mining Geol., v.4, p.1-10.
  26. Kim, O.J. (1971b) Metallogenic epochs and provinces of south Korea. Jour. Geol. Soc. Korea, v.7, p.37-59.
  27. Kim, S.W., Kwon, S., Koh, H.J., Yi, K., Jeong, Y.J. and Santosh, M. (2011) Geotectonic framework of Permo-Triassic magmatism within the Korean Peninsula. Gondwana Research, v.20, p.865-889. https://doi.org/10.1016/j.gr.2011.05.005
  28. Lee, J.H., Choi, S.G., Kim, C.S. and Seo, J. (2018) The geochemistry of the Cretaceous granitoids suites associated with the tungsten polymetallic deposits in the Hwanggangri province, south Korea. 15th IAGOD, Argentina Salta, p.88-89.
  29. Lee, J.H. (2019) The Characteristics of barren and W-Mo productive Jurassic and Cretaceous granitoids in the Hwanggangri district, South Korea. Unpub. M.S. Thesis, Korea University, p.1-139.
  30. Lee, S.-G. Ahn, I., Asahara, Y., Tanaka, T. and Lee, S.R. (2019) Geochemical interpretation of magnesium and oxygen isotope systematics in granites with the REE tetrad effect. Geoscience Journal, v.22, p.697-710. https://doi.org/10.1007/s12303-018-0024-1
  31. Lee, S.G., Shin, S.C., Kim, K.H., Lee, T.J., Koh, H.J. and Song, Y.S. (2010) Petrogenesis of three Cretaceous granites in the Okcheon metamorphic belt, South Korea: Geochemical and Nd-Sr-Pb isotopic constraints. Gondwana Research, v.17, p.87-101. https://doi.org/10.1016/j.gr.2009.04.012
  32. Lee, S.Y., Choi, S.-G., So, C.S., Ryu, I.-C., Wee, S.-M. and Heo, C.-H. (2003) Base-metal mineralization in the Cretaceous Gyeongsang Basin and its genetic implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong metallogenic provinces. Econ. Environ. Geol., v.36, p.257-268.
  33. Maruyama, S., Isozaki, Y., Kimura, G. and Terabayashi, M. (1997) Paleo-geographic maps of the Japanese islands. plate tectonic synthesis from 750 Ma to the present. Island Arc. v.6, p.121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  34. Park, H.I. and Kang, S.J. (1988) Gold and silver mineralization of Samhyungje vein, the Mugeug mine. Jour. Korean Inst. Mining Geol., v.21, p.257-268.
  35. Park, H.I., Chang, H.W. and Jin, M.S. (1988a) K-Ar ages of mineral deposits in the Taebaeg Mountain district. Jour. Korean Inst. Mining Geol., v.21, p.57-67.
  36. Park, H.I., Chang, H.W. and Jin, M.S. (1988b) K-Ar ages of mineral deposits in the Gyeonggi massif. Jour. Korean Institute of Mining Geol., v.21, p.349-358.
  37. Reedman, A.J., Fletcher, C.J.N., Evans, R.B., Workman, D.R., Yoon, K.S., Rhyu, H.S., Jeong, S.H. and Park, J.N. (1973) The geology of the Hwanggangri mining district, Republic of Korea. Anglo-Korean Mineral Exploration Group, 119p.
  38. Sagong H., Kwon S.T. and Ree J.H. (2005) Mesozoic episodic magmatism in South Korea and its tectonic implication. Tectonics, v.24, p.1-18.
  39. Seo, J., Choi, S.-G. and Oh, C.W. (2010) Petrology, geochemistry, and geochronology of the Post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research, v.18, p.479-496. https://doi.org/10.1016/j.gr.2009.12.009
  40. Seo, J,, Choi, S.-G., Kim, D.W., Park, J.W. and Oh, C.W. (2015) A new genetic model for the Triassic Yangyang iron-oxide-apatite deposit, South Korea: Constraints from in situ U-Pb and trace element analyses of accessory minerals. Ore Geology Reviews, v.70, p.110-135. https://doi.org/10.1016/j.oregeorev.2015.04.009
  41. Seo, J., Choi, S.-G., Park, J.W., Whattam, S., Kim, D.W., Ryu, I.-C. and Oh, C.W. (2016) Geochemical and mineralogical characteristics of the Yonghwa phoscorite-carbonatite complex, South Korea, and genetic implications. Lithos, v.262, p.609-619.
  42. Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae-Hwa Tungsten-Molybdenum mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal system. Econ. Geol., v.82, p.471-481. https://doi.org/10.2113/gsecongeo.82.2.471
  43. Shimazaki, H., Shibata, K., Uchiumi, S., Lee, M.S. and Kaneda, H. (1987) K-Ar ages of some W-Mo deposits and their bearing on metallogeny of South Korea. Mining Geol., v.37, p.395-401.
  44. Shin, Y.H., Yoo, B.C., Lim, M., Park, Y.-S. and Ko, I.S. (2014) Gravity exploration inferring the source granite of the NMC Moland mine, Jecheon, Chungbuk. Econ. Env. Geol., v.47, p.107-119. https://doi.org/10.9719/EEG.2014.47.2.107
  45. So, C.S. and Shelton, K. L. (1983) A sulfur isotopic and fluid inclusion study of the Cu-W-bearing tourmaline breccia pipe, Ilkwang mine, Republic of Korea. Econ. Geol., v.78, p.326-332. https://doi.org/10.2113/gsecongeo.78.2.326
  46. So, C.S. and Shelton, K.L. (1987) Stable isotope and fluid inclusion studies of gold-silver bearing hydrothermal vein deposits, Cheonan-Cheongyang-Nonsan mining district, Republic of Korea: Cheonan area. Econ. Geol., v.82, p.987-1000. https://doi.org/10.2113/gsecongeo.82.4.987
  47. Uchida, E., Choi, S.-G., Baba, D. and Wakisaka, Y. (2012) Petrogenesis and solidification depth of the Jurassic Daebo and Cretaceous Bulguksa granitic rocks in south Korea. Resource Geol., v.62, p.281-295. https://doi.org/10.1111/j.1751-3928.2012.00195.x
  48. Williams, I.S., Cho, D.L. and Kim, S.W. (2009) Geochronology, and geochemical and Nd-Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, south Korea: constraints on Triassic post-collisional magmatism. Lithos, v.107, p.239-256. https://doi.org/10.1016/j.lithos.2008.10.017
  49. Yi, S.B., Oh, C.W., Lee, S.-Y., Choi, S.-G., Kim, T. and Yi, K. (2016) Triassic mafic and intermediate magmatism associated with continental collision between the North and South China Cratons in the Korean Peninsula. Lithos, v.246-247, p.149-164. https://doi.org/10.1016/j.lithos.2015.12.026
  50. Yoo, B.C., Lee, H.K. and White, N.C. (2006) Gold-bearing mesothermal veins from the Gubong mine, Cheongyang gold distirict, Republic of Korea: Fluid inclusion and stable isotope studies. Econ. Geol., v.101, p.883-901. https://doi.org/10.2113/gsecongeo.101.4.883
  51. Zhai, M.G., Zhang, Y.B., Zhang, X.H., Wu, F.Y., Peng, P., Li, Q.L., Hou, Q.L., Li, T.S. and Zhao, L. (2016) Renewed profile of the Mesozoic magmatism in Korean Peninsula: regional correlation and broader implication for cratonic destruction in the North China Craton. Sci. China Earth Sci., v.59, p.1-34.