• Title/Summary/Keyword: 후공정

Search Result 4,652, Processing Time 0.029 seconds

Growth of Landscape Tree Species at Two Planting Densities in a Planting Pilot System for Reclaimed Dredging Areas (임해준설매립지 식물재배공정에서 밀도에 따른 조경수목의 생장)

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.114-123
    • /
    • 2009
  • To investigate the possible use of plants for landscaping in reclaimed soil, a planting pilot system experiment was performed over the course of four years in reclaimed dredging area with four species: Alnus firma, Alnus hirsuta, Pinus thunbergii, and Pyrachantha angustifolia for 4 years. The physicochemical characteristics of the tested soil showed that it was sandy through coming from a reclaimed dredging area. The average pH of the tested soil was 7.16(slight alkali), and electric conductivity(EC) was relatively low, $294{\mu}S/cm$, even though it came from a saltwater area. To test the effect of planting density vs. phytomass by plant specie from a planting basin, the experiment was designed using four plant species with high and low planting densities over 4 years. The planting conditions of the growth of landscape tree species exhibited growth height as follows: A. hirsuta, A. firma, P. thunbergii, and P. angustifolia, whill the DBH followed the order of A. hirsuta, A. firma, and P. thunbergii. The total phytomass of each plant was higher at low density planting areas than high density planting area in terms of total phytomass production and growth distribution in the reclaimed dredging area. Total phytomass per unit area increased as follows: A. hirsuta, A. firma, P. thunbergii, and P. angustifolia. The total phytomass per each tested plant was 2 times higher in low density planting areas than high density planting areas. Total phytomass per unit area, however, was similar or slighty higher in high density planting areas compared to low density areas. Among the tested plants, A. hirsuta showed the highest phytomass, implying that A. hirsuta adapted very well to the reclaimed area and has the capability of a fast growth, nitrogen fixation tree, and utilizing insoluble nutrients through inoculated root nodule bacteria. The yield of phytomass per individual in low density Alnus species was greater than that of the high density. However, those per unit areas had no difference in the density-dependent planting. The ratio of belowground to aboveground was $0.21{\sim}0.26$. Thus, it could be concluded that the Alnus species are potential candidates for ornamental tree species in reclaimed dredging areas. This study offers baseline data for the use of ornamental tree species in reclaimed dredging areas. Additional research is required for different ornamental species in order to increase phytomass of a planting conditions based on reclaimed dredging areas.

Two Dimensional Size Effect on the Compressive Strength of Composite Plates Considering Influence of an Anti-buckling Device (좌굴방지장치 영향을 고려한 복합재 적층판의 압축강도에 대한 이차원 크기 효과)

  • ;;C. Soutis
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.23-31
    • /
    • 2002
  • The two dimensional size effect of specimen gauge section ($length{\;}{\times}{\;}width$) was investigated on the compressive behavior of a T300/924 $\textrm{[}45/-45/0/90\textrm{]}_{3s}$, carbon fiber-epoxy laminate. A modified ICSTM compression test fixture was used together with an anti-buckling device to test 3mm thick specimens with a $30mm{\;}{\times}{\;}30mm,{\;}50mm{\;}{\times}{\;}50mm,{\;}70mm{\;}{\times}{\;}70mm{\;}and{\;}90mm{\;}{\times}{\;}90mm$ gauge length by width section. In all cases failure was sudden and occurred mainly within the gauge length. Post failure examination suggests that $0^{\circ}$ fiber microbuckling is the critical damage mechanism that causes final failure. This is the matrix dominated failure mode and its triggering depends very much on initial fiber waviness. It is suggested that manufacturing process and quality may play a significant role in determining the compressive strength. When the anti-buckling device was used on specimens, it was showed that the compressive strength with the device was slightly greater than that without the device due to surface friction between the specimen and the device by pretoque in bolts of the device. In the analysis result on influence of the anti-buckling device using the finite element method, it was found that the compressive strength with the anti-buckling device by loaded bolts was about 7% higher than actual compressive strength. Additionally, compressive tests on specimen with an open hole were performed. The local stress concentration arising from the hole dominates the strength of the laminate rather than the stresses in the bulk of the material. It is observed that the remote failure stress decreases with increasing hole size and specimen width but is generally well above the value one might predict from the elastic stress concentration factor. This suggests that the material is not ideally brittle and some stress relief occurs around the hole. X-ray radiography reveals that damage in the form of fiber microbuckling and delamination initiates at the edge of the hole at approximately 80% of the failure load and extends stably under increasing load before becoming unstable at a critical length of 2-3mm (depends on specimen geometry). This damage growth and failure are analysed by a linear cohesive zone model. Using the independently measured laminate parameters of unnotched compressive strength and in-plane fracture toughness the model predicts successfully the notched strength as a function of hole size and width.

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.

Dealumination of $NH_4Y$-Zeolite to Convert to the Hydrophobic Zeolite by High-Temperature Steam Treatment (소수성 제올라이트로의 변환을 위한 고온 수증기처리에 의한 $NH_4Y$-제올라이트의 탈알루미늄)

  • Kim, Jin-Young;Jeon, Dong-Hwan;Chung, Byung-Hwan;Mo, Se-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.420-430
    • /
    • 2005
  • This study was performed to change the hydrophilic $NH_4Y$-zeolite to the hydrophobic one for removal of VOCs by removing the $Al^{3+}$ in the zeolite-structure to increase the Si/Al ratio, for which the three pelleted $NH_4Y$-zeolite samples were contacted separately with the steam of $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$, respectively, in a stainless steel column for 4 hours. Then extraction of the ex-structure aluminum of the hydrolyzed zeolites with the nitric acids of 0.25, 0.50, 0.75, and 0.10 M at $90^{\circ}C$ in 500 mL-flasks, respectively, according to steam temperature were followed. XRD analysises of the dealuminated zeolites showed that the peaks of the zeolites that had been hydrolyzed with the steams of both $500^{\circ}C$ and $600^{\circ}C$ are distorted more with the increase of the concentration of nitric acid used for extraction of the ex-structure aluminums, however, those hydrolyzed with steam of $400^{\circ}C$ became amorphous phase when treated with the all nitric acids of four concentrations. Also the EDX analysises showed that the BET surface areas and TPVS of the zeolites that had been hydrolyzed with the steam of $600^{\circ}C$ were increased with the concentration of the nitric acid when the nitric acids of 0.25 M and 0.5 M had been used but decreased when the nitric acids of 0.75 M and 1.0 M had been used. These results led to the conclusion that both the $600^{\circ}C$ and $500^{\circ}C$-steam and the 0.5 M-nitric acid are appropriate to change the hydrophilic $NH_4Y$-zeolites to the hydrophobic one, which were proven by the measurement of the benzene and tolune-adsorbing capacities showing the same trend as the BET surface area and TPV The Si/Al ratios and water-adsorbing capacities of the dealuminated zeolites were increased and decreased, respectively, with the concentration of the nitric acids so that it showed that the hydrophobicity is increased.

Quantitative Analysis of Paeoniflorin and Paeonol in Peony Extracts and Quality Control Standards (모란 추출액에서 paeoniflorin과 paeonol 동시 정량 분석 및 화장품 원료의 품질관리 기준 설정)

  • Yun, Ki-Hun;Chi, Yong-Ha;Lee, Dong-Kyu;Paik, Soo-Heui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.235-246
    • /
    • 2018
  • Paeony has pharmacological activities such as anti-inflammatory, anti-allergic, anti-bacterial, central inhibitory, gastric secretion inhibition, and antispasmodic activities. In addition, its antioxidant activity and whitening effect being reported, thus it is being explored as raw materials for cosmetics. We compared the changes in the contents of paeoniflorin and paeonol in Peony extracts, depending on the changes of extracting solvents, temperature and time. The HPLC method was set up for simultaneous analysis, the system suitabilities were confirmed by using the calibration curves and the QC samples for each assay batch. Paeonol was detected only in roots, and paeoniflorin was higher in leaf and flower than root. Higher concentrations of both ingredients were extracted when the root was used after grinding to a suitable size, and when 30% 1,3-butylene glycol was used as the extraction solvent. Also the concentrations tended to increase at higher temperature and longer time, but the increase was gradual at over $75^{\circ}C$ and 4 hours. The ratio of root, leaf and flower was determined to be 2+2+1g/0.5kg of batch, reaching the contents criteria of paeoniflorin and paeonol. Finally, we selected as the best extraction condition when the raw materials are mixed with 2+2+1g/0.5kg and extracted with 30% 1,3-butylene glycol as an extraction solvent at $75^{\circ}C$ for 4 hours, considering both the concentrations of two components and the cost of raw materials and manufacturing process, The extraction units were scaled up to 10 kg under this condition.

Environmental Evaluation for the Remanufacturing of Rental Product Using the LCA Methodology (LCA기법을 이용한 랜탈 재제조품의 환경성 평가)

  • Kwak, In-Ho;Hwang, Young-Woo;Park, Kwang-Ho;Park, Ji-Hyoung;Seol, So-Young;Shin, Hwa-Jeong;Yang, Eun-Hyeok;Min, Gon-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.11
    • /
    • pp.611-617
    • /
    • 2016
  • Remanufacturing that is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling has been received attention in aspects of resource, recycling because it is a great environmental improvement. Remanufacturing is the rebuilding of a product to specifications of the original manufactured product by collecting used-product, completely disassembling, cleaning and repairing or replacing with a new part and reassembling. With a great environmental improvement and resource recycling and conservation, many studies were conducted. Up to date, remanufacturing activities are mainly applied to automobile parts and printer toner cartridge in South Korea. However, remanufacturing of rental product is not well conducted although rental products are collected in good condition and could be remanufactured in the same condition as a new product. Therefore, in this study, we conducted life cycle assessment (LCA) to an air cleaner product that is one of rental products. This study attempts to identify the processes in new products and remanufacturing life cycles that contribute the most environmental impacts. The results show that air cleaner remanufacturing could reduce about 20% of environmental impacts compared to new product. The greatest benefit related to environmental impact is with regard to ozone layer depletion potential (ODP), which is reduced by 94%. In the life cycle of air cleaner, raw material extraction stage had the most environmental impacts, especially with regard to abiotic depletion potential (ADP) and global warming potential (GWP). In the environmental impacts in each part, the ABS power had the highest environmental impacts.

Development of Simultaneous Analytical Method for Determination of Isoxaflutole and its Metabolite (Diketonitrile) residues in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Isoxaflutole과 대사산물(Diketonitrile)의 동시시험법 개발)

  • Ko, Ah-Young;Kim, Heejung;Do, Jung Ah;Jang, Jin;Lee, Eun-Hyang;Ju, Yunji;Kim, Ji Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.93-103
    • /
    • 2016
  • A simultaneous analytical method was developed for the determination of isoxaflutole and metabolite (diketonitrile) in agricultural commodities. Samples were extracted with 0.1% acetic acid in water/acetonitrile (2/8, v/v) and partitioned with dichloromethane to remove the interference obtained from sample extracts, adjusting pH to 2 by 1 N hydrochloric acid. The analytes were quantified and confirmed via liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive-ion mode using multiple reaction monitoring (MRM). Matrix matched calibration curves were linear over the calibration ranges ($0.02-2.0{\mu}g/mL$) for all the analytes into blank extract with $r^2$ > 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates at each level. The recoveries were ranged between 72.9 to 107.3%, with relative standard deviations (RSDs) less than 10% for all analytes. All values were consistent with the criteria ranges requested in the Codex guideline (CAC/GL40, 2003). Furthermore, inter-laboratory study was conducted to validate the method. The proposed analytical method was accurate, effective, and sensitive for isoxaflutole and diketonitrile determination in agricultural commodities.

Optimization of Culture Conditions for 1,3-propanediol Production from Glycerol Using Klebsiella pneumoniae (글리세롤로부터 1,3-propanediol 생산을 위한 Klebsiella pneumoniae 배양 조건 최적화)

  • Jun, Sun-Ae;Kong, Sean W;Sang, Byoung-In;Um, Youngsoon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.768-774
    • /
    • 2009
  • To improve the productivity of 1,3-propanediol(1,3-PD) with K. pneumoniae DSM4799 using pure glycerol and crude glycerol derived from the biodiesel process, optimizing fermentation conditions was performed by changing environmental factors such as anaerobic/aerobic condition, temperature, glycerol concentration, and pH. When anaerobic conditions were maintained, there was an improved 1,3-PD production compared with that from aerobic/anaerobic 2-stage fermentation. From the results with temperature $26{\sim}37^{\circ}C$, the higher 1,3-PD production yield was observed at $30{\sim}33^{\circ}C$. For an initial glycerol concentration higher than 60 g/L, cell growth and 1,3-PD production were inhibited. When crude glycerol was used, the initial 1,3-PD production appeared to be inhibited. After 48 hr of incubation, however, 1,3-PD production with crude glycerol was even higher than that with pure glycerol, demonstrating the feasibility of 1,3-PD production using crude glycerol as a substrate. Fed-batch fermentation was applied for the high concentration of 1,3-PD without substrate inhibition. By regulating pH at 7 during the fed-batch with glycerol lower than 40 g/L, the yield of 1,3-PD was 25% higher than that without pH regulation(0.56 g/g vs. 0.45 g/g). In conclusion, based on our results, anaerobic conditions, temperature at $30^{\circ}C$, pure or crude glycerol lower than 40 g/L, and pH regulation at 7 were the optimized conditions for 1,3-PD production using K. pneumoniae DSM4799, making it more feasible to produce 1,3-PD at higher concentration and a lower price.

Optimization of Pre-treatment of Tropical Crop Oil by Sulfuric Acid and Bio-diesel Production (황산을 이용한 열대작물 오일의 전처리 반응 최적화 및 바이오디젤 생산)

  • Kim, Deog-Keun;Choi, Jong-Doo;Park, Ji-Yeon;Lee, Jin-Suk;Park, Seung-Bin;Park, Soon-Chul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.762-767
    • /
    • 2009
  • In this study, the feasibility of using vegetable oil extracted from tropical crop seed as a biodiesel feedstock was investigated by producing biodiesel and analysing the quality parameters as a transport fuel. In order to produce biodiesel efficiently, two step reaction process(pre-treatment and transesterificaion) was required because the tropical crop oil have a high content of free fatty acids. To determine the suitable acid catalyst for the pre-esterification, three kinds of acid catalysts were tested and sulfuric acid was identified as the best catalyst. After constructing the experimental matrix based on RSM and analysing the statistical data, the optimal pre-treatment conditions were determined to be 26.7% of methanol and 0.982% of sulfuric acid. Trans-esterification experiments of the pre-esterified oil based on RSM were carried out, then discovered 1.24% of KOH catalyst and 22.76% of methanol as the optimal trans-esterification conditions. However, the quantity of KOH was higher than the previously established KOH concentration of our team. So, we carried out supplemental experiment to determine the quantity of catalyst and methanol. As a result, the optimal transesterification conditions were determined to be 0.8% of KOH and 16.13% of methanol. After trans-esterification of tropical crop oil, the produced biodiesel could meet the major quality standard specifications; 100.8% of FAME, 0.45 mgKOH/g of acid value, 0.00% of water, 0.04% of total glycerol, $4.041mm^2/s$ of kinematic viscosity(at $40^{\circ}C$).

The Study of Solid Waste Compost Development for Reclaiming Damage Soil in Forest (산림훼손토양 복원을 위한 부숙토 개발 연구)

  • Na, Seung-Ju;Chang, Ki-Woon;Yang, Hui-Young;Jeon, Han-Ki;Lee, Jong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.107-120
    • /
    • 2005
  • To study the development of solid waste compost to use sewage sludge and paper mill sludge for reclaiming damage soil in forest, the changes of temperature, moisture, chemical properties, heavy metals and harmful compound during the aerobic decomposition were investigated, and the compost decomposition of final products investigated the round paper chromatography method and G.I(Germination index) value. The results were summarized as follows. Temperature was changed a little during early 5days because of air temperature too low. That was rapidly increased to over $50^{\circ}C$ at 4days after first turning and then decreased gradually fallen to $40{\sim}50^{\circ}C$ at 15days after aerobic decomposition in A and C treatments. The second turning was conducted at 18 days after aerobic decomposition, and then the temperature was little changed. At the compare first with terminal product, The moisture content was decreased all treatments but the change was little in A and B treatments. pH was decreased to below 1 in all treatments. EC was increased to below 5dS/m. The content of total carbon, C/N ratio, $NH_4{^+}-N$ were decreased with 4~7%, below 8 and below 500mg/kg in all treatments, respectively. The content of total nitrogen, $NO_3{^-}-N$, CEC were increased with below 0.5%, below 173mg/kg and over $30cmol^+/kg$ in all treatments, respectively. The content of heavy metals and harmful compound were similar during aerobic decomposition and suited to standard of 가 grade in all treatments. The result of round paper chromatography method and G.I. value, The C treatment concluded well aerobic decomposition. Especially, the G.I. value in C treatment was 64.1 and 66.2 at cabbage and grass, respectively.

  • PDF