• Title/Summary/Keyword: 효율적 고리화 반응

Search Result 5, Processing Time 0.018 seconds

Efficient Cyclization of Substituted Diphenols : Application to the Synthesis of Sulforhodamine B (치환 다이페놀의 효율적 고리화 반응: 설퍼로다민B의 합성에의 응용)

  • Park, Min Kyun;Shim, Jae Jin;Ra, Choon Sup
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2015
  • Rhodamine dyes are widely used as fluorescent probes because of their excellent photophysical properties, such as high extinction coefficients, excellent quantum yields, great photostability, relatively long emission wavelengths. A great synthetic effort has been focused on developing efficient and practical procedures to prepare rhodamine derivatives, because for most applications the probe must be covalently linked to another (bio)molecule or surface. Sulforhodamine B is one of the most used rhodamine dyes for this purpose, because it carries two sulfoxy functions which can be easily utilized for binding with other molecules. Recently, we needed an expedient, practical synthesis of sulforhodamine derivatives. We found the existing procedure for obtaining those compounds unsatisfactory, particularly, with the cyclization process of the dihydroxytriarylmethane (1) to produce the corresponding xanthene derivative (2). We report here our findings, which represent modification of the existing literature procedure and provide access to the corresponding xanthene derivative (2) in a high yield. Use of methanol as a co-solvent was found quite effective to prohibit the water molecule produced during the cyclization reaction from retro-cyclizing back to the starting dihydroxytriarylmethane and the yield of the cyclization was increased (up to 84% from less than 20%). The reaction temperature was significantly lowered (80 vs. 135 ℃). Thus, the reaction proceeds in a higher yield and energy-saving manner where the use of reactants and the production of chemical wastes is minimized.

Studies on the Synthesis of Etodolac Derivatives as Potential Anti-inflammatory Agents (항염증제인 Etodolac 유도체의 합성에 관한 연구)

  • Cho, Hoon;Chung, Yong Seog;Jang, Hang Dong;Ryu, Seong Ryual
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-137
    • /
    • 1999
  • For the synthesis of new anti-inflammatory agents as indol derivatives, we have synthesized ${\alpha}$-benzoyl-1-ethyl-1,3,4,9-tetrahydro-8-ethyl-9-(N-benzoyl)pyrano[3,4-b]indole-1-acetic acid methyl ester. It was a new method for ${\alpha}$-substituted etodolac carboxylic acid. The synthetic process was composed of four steps, and 7-ethylindole and oxalyl chloride were used as starting materials. The third step, cyclization was carried out by addition of borontrifluoride diethyl etherate in 66% yield. The step of reduction and cyclization were simplified successfully. The final product, ${\alpha}$-benzoyl-1-ethyl-1,3,4,9-tetrahydro-8-ethyl-9-(N-benzoyl)pyrano[3,4-b]indole-1-acetic acid methyl ester was obtained in 66% yield by the reaction of methyl 1,8-dimethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-acetate (etodollic acid methyl ester) and benzoyl chloride.

  • PDF

Synthesis and Characterization of Chelating Resins Containing Thiol Croups (티올기를 함유하는 킬레이트 수지의 합성 및 특성)

  • 박인환;방영길;김경만;주혁종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.330-339
    • /
    • 2003
  • Three kinds of macro-reticular bead-typed chelating resins having thiol groups were obtained from basic resins like poly(strene-co-divinylbenzene) (PSD) and poly(styrene-co-methyl methacrylate-co-divinylbenzene) (PSMD): the chelating resin (I) was prepared by chloromethylation of phenyl rings of PSD followed by thiolation using thiourea. The chelating resin (ll) was designed to provide enough space to chelate heavy metal ions; one chloromethyl group was obtained by chlorination of hydroxymethyl group provided by reduction of carboxylic ester group of PSMD and another chloromethyl group was obtained by direct chloromethylation of pendent phenyl group using chloromethyl methyl ether. Both of chloromethyl groups were thiolated by using thiourea. The chelating resin (III) was prepared by chlorosulfonation of phenyl rings of PSD followed by thiolation using sodium hydrosulfide. The adsorbtivity toward heavy metal ions was evaluated. The hydrophobic chelating resin (I) with thiol groups showed highly selective adsorption capacity f3r mercury ions. However, the chelating resin (II) with thiol groups showed mere effective adsorption capacity toward mercury ions than chelating resin (I) with thiol groups, and showed some adsorption capacity for other heavy metal ions like Cu$\^$2+/, Pb$\^$2+/, Cd$\^$2+/ and Cr$\^$3+/. On the other hand, the chelating resin (III) which have hydrophilic thiosulfonic acid groups was found to be effective adsorbents for some heavy metal ions such as Hg$\^$2+/, Cu$\^$2+/, Ni$\^$2+/, Co$\^$2+/, Cr$\^$3+/ and especially Cd$\^$2+/ and Pb$\^$2+/.

Silica Sulfuric Acid as a Mild and Efficient Reagent for the Synthesis of 1,4-Diazepine and 1,5-Benzodiazepine Derivatives (Silica Sulfuric Acid를 이용한 효율적인 1,4-diazepine and 1,5-benzodiazepine 유도체의 합성)

  • Joshi, Y.C.;Saingar, Shalini;Kavita, Kavita;Joshi, P.;Kumar, Rajesh
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.4
    • /
    • pp.638-643
    • /
    • 2011
  • The synthesis of biologically active 1H-1,4-diazepines 4a-d and 3H-1,5-benzodiazepines 5a-d in good yields, from the heterocyclization reaction of 2-(4-methylthio benzenesulfonyl)-1,3-dimethyl/1-methyl-3-phenyl/1,3-diphenyl/1-methyl-3-ethoxy propane-1,3-dione 3a-d with ethylenediamine (EDA) and o-phenylenediamine (o-PDA), respectively, in the presence of silica sulfuric acid (SSA) is described. The novel ${\beta}$-diketones/${\beta}$-ketoesters 3a-d were synthesized by the condensation reaction of 4-methylthiobenzenesulfonyl chloride 1 with various ${\beta}$-diketones/${\beta}$-ketoesters 2a-d. All structures of the newly synthesized compounds were elucidated by elemental analysis and spectral studies. The compounds 4a-d and 5a-d have been screened for antimicrobial, antifungal and anthelmintic activity.

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.