Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.12
/
pp.8719-8727
/
2015
The purpose of this study is to examine the production efficiency of Rose farm and to explain the factors of the inefficiency. To analysis the production efficiency, SFA(Stochastic Frontier Analysis) and DEA(Data Envelopment Analysis) methods are measured, and then, Tobit regression model is used to analysis the influential factors on the production efficiency. As a result, first, the production efficiency by SFA is 88.4%, and by DEA, results are 78.5% and 85.2% in the CRS and VRS model, respectively. In particular, the production efficiency of the measurement results of the two methods are complementary, it is described in the same order of efficiency of each management body. Second, the results of tobit model shows that 6 input-factors are significant, and seed/nursery and material costs, which have the largest regression coefficient value and positive effect on production efficiency, are the most influential factors. Therefore, the results of this study indicates Rose farm can enhance their management efficiency by increasing amount of the seed/nursery and material costs.
The purpose of this paper is to show the clustering trend and the empirical comparison and to choose the clustering ports for 3 Korean ports(Busan, Incheon and Gwangyang Ports) by using the Fuzzy(Average Index Transformation) DEA and Cross-efficiency models for 38 Asian ports during 11 years(2001-2011) with 4 input variables(birth length, depth, total area, and number of crane) and 1 output variable(container TEU). The main empirical results of this paper are as follows. First, clustering results by using Fuzzy(AIT)DEA show that 3 Korean ports[Busan(56.29%), Incheon(57.96%), and Gwangyang(66.80%) each]can increase the efficiency. Second, according to Cross-efficiency model, Busan(Hongkong, Kobe, Manila, Singapore, and Kaosiung etc.), Incheon(Aquaba, Dammam, Karachi, Mohammad Byin Oasim and Davao), and Gwangyang(Damman, Yokohama, Nogoya, Keelong, Kaosiung, and Bangkok) should be clustered with those ports in parentheses. Third, when both Fuzzy(AIT)DEA and Cross-efficiency models are mixed, the empirical result shows that 3 Korean ports[Busan(71.38%), Incheon(103.89%), and Gwangyang(168.55%) each]can increase the efficiency. The efficiency ranking comparison among the three models by using Wilcoxon Signed-rank Test was matched with the average level of 66%-67%. The policy implication of this paper is that Korean port policy planner should introduce the Fuzzy(AIT)DEA, and Cross-efficiency models with the mixed two models when clustering is needed among the Asian ports for enhancing the efficiency of inputs and outputs. Also, the results of SWOT analysis among the clustering ports should be considered.
In the circumstance of standing out the climate change issue, the purpose of this study is to compare the efficiency of offshore and coastal fisheries according to whether or not greenhouse gas (GHG) emissions are considered, and then to present policy alternatives based on the analysis results. For analysis, the traditional data envelopment analysis (DEA), the slacks-based measure (SBM) and the SBM-undesirable models were used, and robust analysis of variance (ANOVA) and Wilcoxon Signed-rank tests were performed. As a result, the study showed that the average efficiency of fisheries decreased as the traditional DEA extended to the SBM model considering the slack and the SBM-undesirable model including the GHG emissions. Specifically, the average efficiency of the traditional DEA model, SBM model, and SBM-undesirable model was analyzed as 0.7350, 0.5820 and 0.4976 respectively. In addition, the results of the robust ANOVA and Wilcoxon Signed-rank tests all showed that there are statistically significant differences in efficiency between offshore and coastal fisheries as well as among traditional DEA, SBM and SBM-undesirable models. As a policy alternative to the analysis, it was suggested that to improve the efficiency of coastal and offshore fisheries, it is necessary to actively implement the new fishing vessel project and develop smart and electric hybrid fishing vessels.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.183-187
/
2007
유역에서 토사유실로 인한 고농도 탁수의 발생은 현장조사와 수치모형 해석으로 평가될 수 있다. 하지만 현장조사로는 토사유실을 정량화하기에는 제한적이므로 수치모형의 적용이 요구된다. 토사유사예측을 위한 모형 적용 시, 시공간 분석을 위해서 물리적 기반 분포형 혹은 준 분포형 모형이 선호된다. 본 연구에서는 임하 안동 유역의 유출 및 토사유실 분석을 위하여 SWAT 모형 및 HSPF 모형을 적용하였다. 두 모델의 유량 검 보정은 유역 내에 수위 관측 자료(1999년${\sim}$2006년)를 이용하였으며 유사농도는 2006년 하절기 현장 조사를 통해 보정되었다. SWAT 모형의 일별 유출량 변화에 대한 Nash-Sutcliffe 효율계수는 $0.43{\sim}0.76$의 범위로 전반적으로 측정 유량을 잘 모의 하는 것으로 나타났다. HSPF 모형은 SWAT 모형과 마찬가지로 높은 효율의 일별 유출량 예측성을 보였다. 그러나 두 모델은 첨두 유량을 과소산정 하였다. 두 모형의 그래픽 분석결과 측정 유사 농도를 잘 모의하였고, 특히 HSPF 모형은 강우사상에 따른 시간별 실측값의 경향을 잘 예측하였다. 두 모형의 예측성 비교 시, 유출량은 SWAT 모형이 HSPF 모형이 비해 더 잘 모의하였으며 유사 농도는 HSPF 모형이 더 높은 정확성을 보였다. 본 연구의 결과는 향후 각 소유역별로 탁수를 유발하는 토사 유실량 평가, 유역의 토사유실 저감대책 효과분석 및 저수지 모형과의 연계를 통한 유입된 탁수의 효율적인 관리대책 수립에 이용될 것으로 사료된다.
Korean Journal of Construction Engineering and Management
/
v.15
no.5
/
pp.103-114
/
2014
Data envelopment analysis (DEA) measures the relative efficiency of decision making units (DMUs) with multiple performance factors that are grouped into outputs and inputs. DEA has proven to be superior to simple aggregation of performance measures, and is also useful for evaluating the performance of construction companies for comparison with competitor performance. The purpose of this study was to survey literatures on the application of DEA methodology and to propose a methodological scheme to measure the performance of construction organizations. Articles on previous studies were surveyed and examined as part of a comprehensive review. The survey revealed that the application of DEA in the construction industry was li mited. Further, the survey indicated that there is a need for the development of a methodological framework on the special goals and subjects of performance measurement, methods of data structure and collection, selection of appropriate DEA models, analysis of results, and post-test. Based on the survey, this study identified and discussed the types of major issues and topics for future studies from a methodological perspective, which could be helpful to researchers interested in using DEA to study performance issues in construction organizations.
Gangwon-do has evaluated the result of technical support business and marketing support business separately as a part of enterprise support business, and the evaluation, targeting enterprises, has been restricted to the investigation of satisfaction only. The study develops the model that assesses the efficiency of the enterprises using DEA, the econometric model which is approved the utility in efficiency evaluation, and evaluates it through the model. As a result, the model can be developed to the appropriate variable of the enterprise support business using the elements of input and output in the business. And by using the model of DEA, it is suggested the efficiency measurement of each enterprises' and improvement that inefficient enterprises must have. Especially, it is important to assess the efficiency of supporting enterprises primary.
Although the display industry plays an important role in the entire Korean economy, few empirical research has analyzed the efficiency of display companies. The purpose of this paper is to measure and analyze efficiency of korean listed display firms using DEA(Data Envelopment Analysis) models. We evaluate the CCR and BCC efficiency in DEA models and the return to scale of the Korean listed display companies. The benchmarking companies and efficiency value for the display companies with inefficiency are also provided to improve their efficiency. We analyzed the 44 listed companies consisted of 7 listed on KOSPI and 37 listed on KOSDAQ at the end of 2010. The analysis results show six companies whose values of CCR are 1, and fourteen firms whose values of BCC efficiency are 1. In additions, the six companies have the scalability efficiency. Eventually the efficiency analysis can provide the valuable information for inefficient companies to find benchmarking companies and to improve their efficiency.
This study is to investigate seaport clustering by using meta-frontier and cross-efficiency models. Data covers the 13 Asian ports during 2009, 2010 and 2013 with 3 inputs(depth, total area, and number of cranes) and 1 output(TEU). Correlations coefficient from cross-efficiency matrix are used for measuring clustering dendrogram. After that, meta-frontier analysis for investigating whether the clustering using cross-efficiency method increases the meta-efficiency. Empirical main results are as follows: First, group efficiencies of Busan, Incheon, and Gwangyang ports are increased. Second, meta and group efficiencies of China ports are greater than those of Korean ports. Third, distortion of technology gap of Gwangyang is lower than that of Busan and Incheon. Fourth, Gwangyang, clustering with Ningbo, Chingtao, Tokyo and Caosung ports in 2009 and with Dubai port in 2013 can increase the efficiency. Fifth, to enhance the efficiency, Busan port should be clustered to group 2 in 2010 and group 1 in 2013, and Incheon port clustered to group 2 in 2010 and 2013. Fifth, it is empirically investigated that Busan, Incheon and Gwangyang ports can increase the efficiency by using Cross-efficiency and Meta-frontier models. Port policy planner should promote the clustering policy for Busan with Hong Kong, Shanghai, and Singapore, Incheon and Gwangyang with Chingtao, Nagoya, Ningbo, Tokyo, and Kaoshung ports.
In most of studies on market efficiency, the stability of risk measures and the normality of residuals unexplained by the pricing model are presumed. This paper re-examines stock splits, taking the possible violation of two assumptions into accounts. The results does not change the previous studies. But, the size of excess returns during the 2-week period before announcements decreases by 43%. The results also support that betas change around announcements and the serial autocorrelation of residuals is caused by events. Based on the results, the existing excess returns are most likely explained as a compensation to old shareholders for unwanted risk increases in their portfolio, or by uses of incorrect betas in testing models. In addition, the model suggested in the paper provides a measure for the speed of adjustment of the market to the new information arrival and the intensity of information contents.
The purpose of this paper is to investigate the value chain efficiency of Korean port investment by using the newly developed multi-year and multi-stage value chain efficiency model of DEA(Data Envelopment Analysis). Inputs[port investment amount, cargo handling capacity, and berthing capacity], and outputs[cargo handling amount, number of ship calls, revenue, and score of customer service satisfaction] are used during 14 years(1994-2007) for 20 Korean seaports by using two kinds of DEA models. Empirical main results are as follows: First, Model 1 shows that the ranking order of multi-stage value chain efficiency is Stage 2, Stage 3-1, Stage 1, and Stage 3-2. And according to the value chain average efficiency scores, ranking order is stages 2, 1, 3-1, and 3-2. In Model 2, 3(Incheon, Mogpo, and Jeju) out of 9 ports show the ranking order of Stages 2, 3-2, 3-1, and 1. And value chain average efficiency scores rank in order of Stages 2, 3-2, 3-1, and 1. Second, the difference among the value chain efficiency scores of each stage comes from the efficiency deterioration of all ports except Stages 2 and 1 in Model 1. In Model 2, value chain efficiency scores among the Stages 3-1, 3-2 compared to Stage 1 were deteriorated. The main policy implication based on the findings of this study is that the manager of port investment and management of Ministry of Land, Transport and Maritime Affairs in Korea should introduce the multi-year, multi-stage value chain efficiency method for deciding the port investment amount and evaluating the effect of port investment after considering the empirical results of this paper carefully.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.