• Title/Summary/Keyword: 횡방향 지지력

Search Result 39, Processing Time 0.025 seconds

Effect of Relative Density on Lateral Load Capacity of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반의 상대밀도에 따른 횡방향 반복재하 시 말뚝의 극한지지력 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.41-49
    • /
    • 2016
  • Pile foundations used as offshore support structures are dominantly subjected to cyclic lateral loads due to wind and waves. In this study, a series of cyclic lateral load tests were performed on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the effect of cyclic lateral loads on lateral load capacity of a pile. The cyclic lateral loads increased the lateral load capacity of a pile at 40% relative density, whereas they decreased it at 70% and 90% relative densities. This can be explained by the fact that the cyclic lateral loads slightly densified the surrounding soil in relatively loose sand (40%), while the surrounding soil was disturbed in relatively dense sand (70% and 90%). These effects were more obvious as the cyclic lateral load amplitude increased, being independent with the saturation. Also, from the test results, an empirical equation for the lateral load capacity of a cyclic laterally loaded pile in sandy soil was developed in terms of relative density of the soil and the cyclic lateral load amplitude.

Parametric Study on the Lateral Resistance of Offshore Piles with Enlarged Upper Section (상부단면 확대형 해상 말뚝의 횡방향 지지 성능에 미치는 변수 연구)

  • Jang, In-Sung;Kwon, O-Soon;Jung, Young-Hoon;Youn, Hee-Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Pile reinforcement systems with enlarged upper section are newly introduced by using a mechanism that most of horizontal forces are resisted in the upper part of the pile. The new systems are expected to be effectively applicable to the marine structures including port and harbor facilities. In this study, three different reinforcement methods such as bucket pile type, top base pile type, and grouting reinforcement type were utilized in the 3-D. numerical simulations. The parametric study deals with the effects of various factors including soil types and stratigraphy, reinforcement methods, type and dimension of the pile on the lateral behaviors of the pile. The results show that the reinforcement method with bucket pile is the most efficient one compared to the top base pile type and grouting reinforcement type.

A Study on Piled Raft Constructed on Soft Ground through Numerical Analysis (수치해석을 통한 연약지반 상 시공된 Piled Raft 기초의 거동 연구)

  • Kim, Jeonghoon;Kim, Sunkon;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2013
  • In this paper, numerical analyses were conducted on piled raft foundation settlement and pile bearing characteristics in soft ground. Results obviously showed longer and larger piles developed end bearing capacity values, but also showed the load of the central pile is larger than the surrounding piles in a group formation. Additionally, after pile yielding, the load carrying capacity exists as a raft. Moreover, results showed no transverse displacement according to embedment depth for the single pile case, but larger transverse displacements for deeper embedment depths.

Development of Offshore Piles with Enlarged Upper Section (상부단면 확대형 해상 말뚝의 개발)

  • Kwon, O-Soon;Jang, In-Sung;Kwon, Young-Ho;Ki, Min-Joo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.427-436
    • /
    • 2009
  • In this study, new type of pile foundation was introduced for the better performance of lateral resistance than conventional piles by adopting enlarged upper section, because offshore structure design is subjected to the lateral loading. The numerical simulations were peformed in order to find out the lateral behaviour of the proposed pile. The economical efficiency of new pile system was also analyzed by considering the construction characteristics and material costs as well as the real field condition of harbor sites in Korea. From the study, it was revealed that the lateral resistance of piles with enlarged upper section is increased compared to conventional steel pile, and the construction costs would be reduced to about 62~80% of previous methods.

Numerical Study on Ultimate Lateral Resistance of Roots of Vegetation (식물뿌리의 극한 횡방향 저항력에 관한 수치해석적 연구)

  • Lee, Seung-Hyun;Kwon, Oh-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4205-4209
    • /
    • 2011
  • Numerical analysis were executed in order to investigate ultimate lateral resistance of roots of vegetation. Ultimate lateral resistances of roots obtained from the assumed values of cohesions were distributed between the values of the two kinds of the existing studies. The ultimate lateral resistance values were more close to those by the bearing capacity solution than those by the cavity expansion theory. Coefficient of bearing capacity determined by the numerical analysis was 33. Yielding displacements obtained from the numerical analysis were 0.08~0.29 times of the diameter of the root and those were overall close to the value of the existing study which was undertaken for the pile diameter of 1 cm.

Wall Tie Member Force Curve for the Construction Tower Crane (건축용 타워크레인 마스트의 횡방향 지지요소인 월타이 부재력 특성곡선)

  • Ko, Kwang IL;Oh, W.H.;Lee, E.T.
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.697-706
    • /
    • 2006
  • Tower crane's wall tie is generally used for extending of mast height according to rising of lifting height. In order to get wall tie member force this problem, this study concerning wall tie is based on load data described in manual book of 290HC model. This study made the equation of wall tie member force and computer programming for calculating wall tie member force and then get ${\theta}-P$ curves(angle-wall tie force). After considering the ${\theta}-P$ curves, optimum angle range ($48.4^{\circ}{\sim}77.2^{\circ}$) about wall ties (A), (C) members was obtained. Member force of wall tie (B) was changed from tension to compression or from compression to tension at $74^{\circ}$ in service and $54^{\circ}$ in out of service. When both horizontal force($H_A$) and torsional moment ($M_D$) were varied from (+) to (-), wall tie force(A, B, C) were changed almost symmetrically about ${\theta}$-axis. Because this study was based on wall tie analysis conditions, wall tie members in symmetric and ideal geometry shape used for analizing wall tie of tower crane, it is necessary to have more careful verification in order to apply generally the results of this study.

Development of BIM Based Analytical Model for Laterally Loaded Piles with Defects and Application (BIM 기반의 단면이 손상된 말뚝의 수평 거동 해석 모형 개발과 적용)

  • Jung, Young Wook;Ahn, Jaeyoon;Kim, Hyeonseoung;Ahn, Jaehun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.179-188
    • /
    • 2024
  • Nondestructive pile integrity tests are used to confirm the construction of drilled shafts as the foundation of many facilities. However, the safety of the foundation is determined only by the presence or absence of defects, and the location and scale of defects are not considered. In this study, we propose an analysis model for the lateral bearing capacity and section force connected building information modeling (BIM) by extracting the cross-sectional characteristics of the defect in piles and reviewing the safety of piles with defects. Defects at the top of piles had more effect on the change in the deflection of the pile head. Moreover, the decrease in the axial force-bending moment interaction diagram due to cross-sectional reduction increased the risk of destruction of the piles more than the change in the bending moments due to defects. The proposed method can help review the comprehensive safety of piles.

An Experimental Study on the Bearing Capacity and Failure Behavior of Composite Ground Reinforced by RAP Method (RAP 복합지반의 지지력 및 파괴거동에 관한 실험적 연구)

  • 천병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.127-134
    • /
    • 2004
  • Rammed Aggregate Pier (RAP) has extensive applicability as for a foundation of structures. In this study, bearing capacity of the reinforced ground by RAP and the failure behavior of RAP are investigated through experiments. RAPs with diameters of 45, 60, 70 mm were installed in sand, of which relative densities are 60, 70, 90%. Then, two columns of pressure gauges, near the RAPs and one diameter off from the center of piers, are installed 5, 10, 15, 20, 25, 30 cm from the surface of the ground. The test results show that maximum lateral earth pressure is observed near 5∼10 cm (1.0∼2.0D) from the surface, which indicates the occurrence of bulging failure type. In addition, deformation of RAP in radial direction increases with lower relative density of the ground. Furthermore, lateral stress distribution decreases with depth.