• Title/Summary/Keyword: 횡동요 저감 장치

Search Result 15, Processing Time 0.037 seconds

A Sea-Trial Test of a Pendulum-type Mass Driving Anti-Rolling System for Small Ships (소형 선박용 진자식 횡동요 저감장치의 실선시험)

  • 문석준;박찬일;정종안;김병인;윤현규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.438-441
    • /
    • 2004
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MD-ARS) might be one candidate of several systems against the ship's rolling. In this paper, a sea-trial test on a pendulum-type MD-ARS passively operated is carried out in Suyoung, Busan. After the system is installed on the cabin of the small leisure boat, a series of test is conducted before and after operating the system. Through the test, it is confirmed that the roll rate of the ship is pretty well reduced by the system.

  • PDF

Control Logic Design for Mass Driving Anti-Rolling System of Ships (선박의 횡동요 저감장치를 위한 제어로직 설계)

  • 문석준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.725-731
    • /
    • 2003
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-.oiling system (MD-ARS) might be one candidate of several systems against the ship's rolling. As the movable range of the mass on the ship is finite, the control system must include restriction on the mass position to protect the device and the ship. This restriction usually causes windup phenomenon and control performance is deteriorated seriously. We adopt anti-windup technique to improve the control performance and demonstrate its efficiency by simulation.

  • PDF

An Experimental Study on Mass Driving Anti-Rolling System for Ships (부가질량을 이용한 선박용 횡동요 저감장치에 대한 실험적 연구)

  • Moon, Seok-Jun;Kim, Byung-In;Lee, Sung-Hwi;Ham, Sang-Yong;Jeong, Jong-Ahn;Lee, Kyung-Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.727-730
    • /
    • 2004
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MD-ARS) might be one candidate of several systems against the ship's rolling. In this paper, three types of MD-ARS, two passive and one active devices, are developed for small ships. After they are installed on the cabin of the small leisure boat, respectively, a series of test is conducted before and after operating them. Through the test, it is confirmed that the roll responses of the ship are pretty well reduced by the system.

  • PDF

Simulation of Vessel Motion Control by Anti-Rolling Tank (능동형 횡동요 저감 장치를 이용한 선박운동제어 시뮬레이션)

  • Kim, Kyung Sung;Lee, Byung-Hyuk
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.440-446
    • /
    • 2018
  • The effects of an anti-rolling tank (ART) on vessel motions were numerically investigated. The potential-based BEM vessel motion simulation program and particle-based computational fluid dynamics program were dynamically coupled and used to perform a simulation of vessel motions with ART. From the time domain simulation results, the response amplitude operators for sway and roll motions were obtained and compared with the corresponding experimental and numerical results. Because the main purpose of ART was only to reduce roll motions, it was important to show that the natural properties of a floating vessel were not changed by the effects of ART. Various ART filling ratios and several ART positions were considered. In conclusion, ART only reduced the roll motion regardless of its filling ratio and position.

A Study on Conceptual Design of Anti-rolling Devices for 250 TEU Class Mobile Harbors (250 TEU급 모바일하버를 위한 횡동요 저감 장치의 개념 설계 연구)

  • Chung, T.Y.;Moon, S.J.;Lew,, J.M.;Park, C.H.;Cho, H.W.;Kim, B.I.;Yoon, H.K.;Kang, J.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.629-636
    • /
    • 2010
  • A Mobile Harbor is a new transportation platform which can load and unload has containers to and from very large container ships on the sea. Currently designed Mobile Harbor a catamaran type which is equipped with precisely controlled gantry crane on the deck, and can transport 250 TEUs at a time. Loading and unloading works by crane require very small motion of Mobile Harbor in waves, because it may be operated outside of harbors. In this project, applicability of both tuned-type anti-rolling tank and maglev-type active mass driver is studied as anti-rolling systems.

Development of Free Running Model Ship for Evaluation of the Performance of Anti-Rolling Devices (자세제어장비 성능시험을 위한 자유항주 모형선 개발)

  • Yoon Hyeon-Kyu;Lee Gyeong-Joong;Son Nam-Sun;Yang Young-Hoon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.11a
    • /
    • pp.33-39
    • /
    • 2004
  • A ship runs with various modes of motion due to waves. Among the modes, roll mainly influences on the safety of cargos and crew's fatigue. Therefore a ship equipped with anti-rolling devices are on an increasing trend. In this research, we developed a free running model ship to evaluate the performances of fin stabilizer and moving weight stabilizer. Also those performance tests were carried out through the proposed test procedure.

  • PDF

Design of a Pendulum-type Anti-rolling System for USSV and Verification Based on Roll Damping Coefficient (무인반잠수정의 진자식 횡동요 저감 장치 설계 및 감쇠계수 기반 검증)

  • Jin, Woo-Seok;Kim, Yong-Ho;Jung, Jun-Ho;Lee, Kwangkook;Kim, Dong-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.550-558
    • /
    • 2019
  • The roll motion of a general vessel, which is more influenced by resonance as compared to other motions, adversely affects the passenger and hull. Therefore, reducing the roll motion through an anti-rolling system is critical, and most ships use various devices such as anti-rolling tanks, bilge keels, and fin stabilizers to accomplish this. In this study, a simplified model is developed for the application of an anti-rolling device for unmanned semi-submersible vessels. The applied anti-rolling device is installed on the stern and stem of a ship using a pair of servo motors with added weight, and the motor is controlled through the Arduino. The moment of the motor is designed and implemented based on a mathematical model such that it is calculated through the restoring force according to the heel angle of the ship. The performance of the proposed system was verified by utilizing the roll damping coefficient calculated by the free-roll decay test and logarithmic decrement method and was validated by a towing tank test. The system is expected to be used for unmanned vessels to perform sustainable missions.

An Experimental Study on Mass Driving Anti-Rolling System for Ships (가동질량을 이용한 선박용 횡동요 저감장치에 대한 실험적 연구)

  • Moon, Seok-Jun;Jeong, Jong-Ahn;Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Ann, Seong-Phil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.666-672
    • /
    • 2005
  • Reduction of a ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargos as well as improving the comfort of the ride. A mass driving anti-rolling system (MO-ARS) might be one candidate of several systems against the ship's rolling. In this paper, three types of MD-ARS, two passive and one active devices, are developed for small ships. After they are installed on the cabin of the small leisure boat, respectively, a series of performance test is conducted before and after operating them. Through the test, it is confirmed that the roll responses of the ship are pretty well reduced by the MO-ARS.

Development of Numerical Computation Techniques for the Free-Surface of U-Tube Type Anti-roll Tank (U-튜브형 횡동요 감쇄 탱크의 자유수면 해석기법 개발에 관한 연구)

  • Sang-Eui Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1244-1251
    • /
    • 2022
  • Marine accidents due to a loss of stability, have been gradually increasing over the last decade. Measures must be taken on the roll reduction of a ship. Amongst the measures, building an anti-roll tank in a ship is recognized as the most simple and effective way to reduce the roll motion. Therefore, this study aims to develop a computational model for a U-tube type anti-roll tank and to validate it by experiment. In particular, to validate the developed computational model, the height of the free surface in the tank was measured in the experiment. To develop a computational model, the mesh dependency test was carried out. Further, the effects of a turbulence model, time step size, and the number of iterations on the numerical solution were analyzed. In summary, a U-tube type anti-roll tank simulation had to be performed accurately with conditions of a realizable k-𝜖 turbulence model, 10-2s time step size, and 15 iterations. In validation, the two cases of measured data from the experiment were compared with the numerical results. In the present study, STAR-CCM+ (ver. 17.02), a RANS-based commercial solver was used.

Reducing Ship Rolling with a Anti-Rolling Pendulum (안티롤링 진자를 이용한 부유체의 횡동요 저감)

  • Park, Sok-Chu;Yi, Geum-Joo;Park, Kyung-Il
    • Journal of Navigation and Port Research
    • /
    • v.40 no.6
    • /
    • pp.361-368
    • /
    • 2016
  • A ship's rolling motion can make crew and passengers sick and/or apply forces to the structure that cause damage.. Therefore bilge keels are equipped in most ships for anti-rolling. In special cases, anti-rolling tanks (ARTs), fin stabilizers, or gyroscopes can be installed. However, ARTs require a large area to install, and fin stabilizers and gyroscopes are costly to install and expensive to operate. This paper suggests a Anti-rolling pendulum (ARP) to reduce roll motion. ARPs acts like ARTs. However, the ARP has a circular shaped guidance arc instead of the string or wire of a simple pendulum. The device suggested has about 1/ 8 the weight and 1/ 6 the volume of a ART and is more effective. This study derives the nonlinear and linear differential equations of system motion.