• Title/Summary/Keyword: 횡동요운동

Search Result 46, Processing Time 0.023 seconds

A Study on Seakeeping of Container Ships (컨테이너선형의 내항성능특성 고찰)

  • 장택수;윤동환;홍사영;박광동;송명재
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.16-21
    • /
    • 2003
  • Seakeeping performance of container ships is investigated in view of increase of their size in terms of TEU. Recent appearance of post Panamax class containers resulted in increase of GM, so increase of possibility of resonant motion in waves is expected accordingly. Ship motions of various classes of TEU containers were calculated for various sea states and heading angles in order to assess seakeeping characteristics according to increase of size of the ships. It was found that roll motion of post Panamax containers increase due to resonance as sea state becomes rougher. The possibility of controlling roll motion by changing main particulars such as L, B, and T is investigated as well.

A Study on Roll Damping by Numerical Analysis of Viscous Flow (점성유동 해석을 통한 Roll Damping 연구)

  • HONG GJUN-BEOM;BOO KYUNG-TAE;HONG SAM-KWAN;LEE DONG-YEON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.188-192
    • /
    • 2004
  • A Numerical analysis method is developed in order to compute the flaw and wave field for 2-dimensional floating body in the free roll motion with 3 degrees of freedom. Navier-Stokes and continuity equations are gaverning equations in tire present study. Finite Difference method is introduced to discretize the governing equation. The free surface is traced by the interface tracking method and the grid system is fitted to boundaries including free surface and body surface, which is moving in the flow field. The numerical scheme is based on Maker and Cell method. For the sake of validation of the numerical method, the computed roll decay factors according to tire midship section shapes are compared with measured results. The numerical results are discussed in order to understand the effect of midship section shape on roll motion.

  • PDF

Numerical Analysis of Ship Motions in Beam Sea Using Unsteady RANS and Overset Grid Methods (비정상 RANS 법과 중첩격자계를 이용한 횡파중 선박운동 수치해석)

  • Park, Il-Ryong;Hosseini, Seyed Hamid Sadat;Stern, Frederick
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.109-123
    • /
    • 2008
  • The present paper presents the CFD result for a beam wave test case. An ONR tumblehome ship model with bilge keels is used. The beam wave test is for zero forward speed and roll and heave 2DOF with wave slope $a_k=0.156$ and wavelength ${\lambda}=1.12L_{PP}$, with $L_{PP}$ the ship length. The problems is solved numerically with an unsteady Reynolds averaged Navier-Stokes approach. The free surface flow is computed using a single-phase level-set method and the motions in each time step are integrated using a predictor-corrector iteration approach which uses dynamic overset grids moving with relative ship motion. The predicted CFD results for motions and forces are compared with experimental data, showing a reasonable agreement.

The Sloshing Effect on the Roll Motion and 2-DoF Motions of a 2D Rectangular Cylinder (2차원 사각형 주상체의 횡동요 및 2자유도 운동에 미치는 슬로싱의 영향)

  • Kim, Yun-Ho;Sung, Hong-Gun;Cho, Seok-Kyu;Choi, Hang-Shoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.69-78
    • /
    • 2013
  • This study is constructed to investigate the sloshing effect on the motions of a two-dimensional rectangular cylinder experimentally and numerically. The modes of motion under consideration are sway and roll, and also experimental cases are divided by two categories; 1-DoF roll motion and 2-DoF motion (Coupling sway and roll). It is found that the sway response is considerably affected by the motion of the fluid, particularly near the sloshing natural frequency, while the roll response changes comparatively small. The dominant mode of motion is analyzed for 2-DoF experiments as well. The measured data for 1-DoF motions is compared with numerical results obtained by the Multi-modal approach. The numerical schemes vary in detail with the number of dominant sloshing modes; i.e. there is a single dominant mode for the Single-dominant method, while the Model 2 method assumes that the first two modes are superior. For the roll motion, numerical results obtained by the two different methods are relatively in good agreement with the experiments, and these two results are similar in most wave frequency range. However, the discrepancies are apparent where the fluid motion is not governed by a single mode. But both of numerical methods over-predict the motion at the vicinity of the sloshing natural frequency. In order to correct the discrepancy, the modal damping needs to be investigated more precisely. Furthermore, another multi-modal approach, such as the Boussinesq-type method, seems to be required in the region of the intermediate liquid.

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

A Study on the Characteristics of Motion Response of Stern Trawlers in Following Seas (선미식 트롤선의 추파중 선체동요특성에 관한 연구)

  • Kang, Il-Kwon;Park, Byung-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.226-233
    • /
    • 2002
  • In the field of research of sea keeping quality, much development has been made in recent years using the method of calculation based on the strip theory. It is very important to investigate the hull response of a fishing vessel in waves to ensure the safe navigation and fishing operation in rough seas by preserving excellent sea keeping qualities. For this purpose, the author measured various responses of three fishing vessels in waves using real sea experimental measuring system and analyzed the experimental data The results obtained can be summarized as follow. 1. The amplitudes of pitching motion in the experiments appeared low values with more than one peak occasionally in following sea and quartering sea, and the band width of those was found to be wide relatively. 2. The amplitudes of rolling motion in the experiments appeared high values with only one peak in following sea and quartering sea regardless of ship's tonnage, and the band width of those was found to be narrow relatively. 3. The comparisions of theoretical results with those of experiments for the pitching motions and rolling motion in following sea and quartering sea show that the theoretical values are higher slightly than those of experiments in both directions and the period at which the peak appears in the calculations and the experiments has good agreement approximately 4. The calculated responses of two vessels under a assumed wave of 2.2m height and 5.0sec period showed that the response of pitching motion of ship-A are 2.2 times bigger than those of ship-C in following sea and quartering sea, and the response of rolling motion of ship-A is 4.2 times bigger than that of ship-C in quartering sea.