• Title/Summary/Keyword: 회전 오차

Search Result 680, Processing Time 0.023 seconds

The Image Position Measurement for the Selected Object out of the Center using the 2 Points Polar Coordinate Transform (2 포인트 극좌표계 변환을 이용한 중심으로부터의 목표물 영상 위치 측정)

  • Seo, Choon Weon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.147-155
    • /
    • 2015
  • For the image processing system to be classified the selected object in the nature, the rotation, scale and transition invariant features is to be necessary. There are many investigations to get the information for the object processing system and the log-polar transform which is to be get the invariant feature for the scale and rotation is used. In this paper, we suggested the 2 points polar coordinate transform methods to measure the selected object position out of the center in input image including the centroid method. In this proposed system, the position results of objects are very good, and we obtained the similarity ratio 99~104% for the object coordinate values.

A Multiplexing Method using HOE's for Bit-Type Holographic Data Storages (비트 방식 홀로그램 정보저장 장치의 다중화 방법)

  • Park, Woo-Jae;Kim, Sung-Phil;Song, Seok-Ho;Oh, Cha-Hwan;Kim, Pill-Soo;Kim, Ji-Deog
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.5
    • /
    • pp.462-468
    • /
    • 2005
  • The bit type holographic data storage is known to have many advantages in instrumentation for its compactness and simplicity, when compared to the 2-D page type holographic data storage. But it requires various multiplexing method for one bit hologram to achieve high storage densities. We propose an optical architecture for bit type holographic data storage which utilizes peristrophic and angular multiplexing simultaneously. Selectivity and characterization are analyzed for the proposed architecture. The possible number of multiplexing(72 bit holograms) and maximum storage densities calculation is confirmed experimentally.

Fine tuning of wavelength for the intenrnal wavelength locker module at 50 GHz composed of the photo-diode array black with the multi-channel tunable laser diodes in DWDM application (DWDM용 다채널 파장 가변 레이저 다이오드 모듈을 위한 다수개의 광 수신 소자를 갖는 50 GHz 내장형 파장 안정화 모듈의 파장 미세 조정)

  • 박흥우;윤호경;최병석;이종현;최광성;엄용성;문종태
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.5
    • /
    • pp.384-389
    • /
    • 2002
  • A new idea of the wavelength locking module for DWDM application was investigated in the present research. Only one etalon photo-diode is generally used in the internal/external wavelength locking system. For the internal wavelength locking module with 50 GHz applications, an algle tuning method of the etalon commonly applied. However, the alignment process of the etalon with the angle tuning method is limited because the lock performance is extremely sensitive accoriding to the change of the tilting angle. In an optical viewpoint, the alignment tolerance of the locker module with the etalon PD array block was good, and the precise tuning of the wavelength was possible. The characteristics of free spectral range (FSR) and peak shift of wavelength according to the tilting angle with the locker module was investigated. For the present module, the optimized initial tilting angle was experimentally obtained.

Proportional Resonant Feedforward Contrl Algorithm for Speed Ripple Reduction of 3-phase SPMSM (3상 영구자석 동기전동기의 속도 맥동 저감을 위한 비례공진 전향보상 제어 알고리즘)

  • Lee, Seon-Yeong;Hwang, Seon-Hwan;Kim, Gyung-Yub;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1104-1108
    • /
    • 2020
  • This paper propose a variable proportional resonant feedforward algorithm for reducing the speed ripple of a three-phase permanent magnet synchronous motor. In general, the torque ripples can be generated by electrical pulsation due to current measurement errors and dead time and mechanical pulsation because of rotor eccentricity and eccentric load. These torque pulsations can cause speed pulsations of the motor and degrade the operating performance of the motor drive system. Therefore, in this paper, the factors of the speed ripple is analyzed and an algorithm to reduce the speed ripple is proposed. The proposed algorithm applied a variable proportional resonant controller in order to reduce the specific operating frequency included in the speed pulsation, and utilized a feedforward compensation controller structure to perform the compensation operation. The proposed algorithm is verified through various experiments.

Study on Performance Modeling of a MT30 Gas Turbine Engine for Marine Ship Applications (선박용 MT30 가스터빈 엔진의 성능 모델링에 관한 연구)

  • Back, Kyeongmi;Ki, Jayoung;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2021
  • In this study, the performance modeling of MT30 gas turbine engine is performed. The design point is determined, and the component performance maps to which the scaling technique is applied are generated using standard maps provided by the commercial program. Off-design point performance analysis is performed with the generated performance model, and this is compared with the performance deck data of the engine. It is confirmed that the data of the performance maps generated by the one-point scaling method had some errors from the performance deck data, and it is determined that correction is necessary to increase the accuracy of the performance model. Therefore, the off-design point analysis is performed by creating the correction performance model in a manner that obtains the scaling factors for each operating point(off-design point) according to the high pressure spool speed.

SRM Driving Characteristics through Modeling of Variable Hysteresis Current Control (가변 히스테리시스 전류제어 모델링을 통한 SRM 구동특성)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.123-128
    • /
    • 2022
  • The torque of the SRM((Switched Reluctance Motor)) is proportional to the inductance slope, so it has a non-linear torque characteristic, and has a disadvantage in that the torque pulsation is large and noise is severe. In particular, the biggest obstacle to the commercialization of SRM is the pulsating torque generated from the rotating shaft, which has various adverse effects not only on the device itself but also on the peripheral devices. Therefore, various methods for reducing the pulsating torque have been published by domestic and foreign researchers, and there is a study result that the hysteresis controller has an advantage in that it can flow a smooth current compared to the chopping control. However, in determining the hysteresis band, if the band is too small, it has a disadvantage in that it may cause a switching loss due to many switching and an unstable initial start when the encoder is used. Therefore, in this paper, a variable hysteresis controller that can reduce torque ripple in a steady state while having a more stable and fast speed response through the change of the hysteresis band according to the speed error.

Design of Navigation Filter to Improve Tracking Performance in Radar with a Moving Platform (기동 플랫폼 탑재 레이다 추적 성능 향상을 위한 항법 필터 설계)

  • Hyeong-Jun Cho;Hyun-Wook Moon;Ji-Hoon An;Sung-Hwan Sohn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.115-121
    • /
    • 2024
  • As the radar mounted on a moving platform moves and rotates, the state of the radar's coordinate system also changes. At this time, in order to track target, the target's coordinates should be converted using the platform state measured from the sensor, and tracking performance may deteriorate due to causes such as sensor noise, communication delay, and sensor update cycle. In this paper, to minimize the degradation of tracking performance because of sensor error, we designed a navigation filter to estimate the state of the moving platform and analyzed the effect of improving tracking performance by applying the navigation filter through a simulation test. To design this navigation filter, three filter algorithms were applied and analyzed to confirm the effect of improving platform position and attitude performance for each filter, and the navigation filter designed by applying the highest performance filter algorithm was applied to a tracking simulation test. Finally we confirmed Improvement in tracking performance before and after applying navigation filters.

A Study on Damage factor Analysis of Slope Anchor based on 3D Numerical Model Combining UAS Image and Terrestrial LiDAR (UAS 영상 및 지상 LiDAR 조합한 3D 수치모형 기반 비탈면 앵커의 손상인자 분석에 관한 연구)

  • Lee, Chul-Hee;Lee, Jong-Hyun;Kim, Dal-Joo;Kang, Joon-Oh;Kwon, Young-Hun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.5-24
    • /
    • 2022
  • The current performance evaluation of slope anchors qualitatively determines the physical bonding between the anchor head and ground as well as cracks or breakage of the anchor head. However, such performance evaluation does not measure these primary factors quantitatively. Therefore, the time-dependent management of the anchors is almost impossible. This study is an evaluation of the 3D numerical model by SfM which combines UAS images with terrestrial LiDAR to collect numerical data on the damage factors. It also utilizes the data for the quantitative maintenance of the anchor system once it is installed on slopes. The UAS 3D model, which often shows relatively low precision in the z-coordinate for vertical objects such as slopes, is combined with terrestrial LiDAR scan data to improve the accuracy of the z-coordinate measurement. After validating the system, a field test is conducted with ten anchors installed on a slope with arbitrarily damaged heads. The damages (such as cracks, breakages, and rotational displacements) are detected and numerically evaluated through the orthogonal projection of the measurement system. The results show that the introduced system at the resolution of 8K can detect cracks less than 0.3 mm in any aperture with an error range of 0.05 mm. Also, the system can successfully detect the volume of the damaged part, showing that the maximum damage area of the anchor head was within 3% of the original design guideline. Originally, the ground adhesion to the anchor head, where the z-coordinate is highly relevant, was almost impossible to measure with the UAS 3D numerical model alone because of its blind spots. However, by applying the combined system, elevation differences between the anchor bottom and the irregular ground surface was identified so that the average value at 20 various locations was calculated for the ground adhesion. Additionally, rotation angle and displacement of the anchor head less than 1" were detected. From the observations, the validity of the 3D numerical model can obtain quantitative data on anchor damage. Such data collection can potentially create a database that could be used as a fundamental resource for quantitative anchor damage evaluation in the future.

Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate (Variable Axis Baseplate를 이용한 Non-coplanar 토모테라피의 유용성)

  • Ha, Jin-Sook;Chung, Yoon-Sun;Lee, Ik-Jae;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Jeon, Mi-Jin;Cho, Yoon-Jin;Kim, Ki-Kwang;Lee, Seul-Bee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.23 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Purpose: Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Materials and Methods: Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ($\sqrt{x^2+y^2+z^2}$) value for assessing overall movement. Results: Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group who did not use, but the mean of Y-axis movement was lower by at least 64%, and the mean of Z-axis was lower by at least 67%, and the mean of Z-axis was lower by at least 67%, and the vector was lower by at least 59% with the use of a mouthpiece. Among these 8 patients, one patient whose tumor was located on left frontal lobe and left basal ganglia received reduced radiation dose of 38% in right eye, 23% in left eye, 30% in optic chiasm, 27% in brain stem, and 8% in normal brain with non-coplanar method. Conclusion: Tomotherapy only allows coplanar delivery of IMRT treatment. To complement this shortcoming, Tomotherapy can be used with non-coplanar method by artificially tilting the patient's head and using an oral immobilization instrument to minimize the movement of patient, when intracranial tumor locates near critical organs or has to be treated with high dose radiation.

  • PDF

Evaluate the implementation of Volumetric Modulated Arc Therapy QA in the radiation therapy treatment according to Various factors by using the Portal Dosimetry (용적변조회전 방사선치료에서 Portal Dosimetry를 이용한 선량평가의 재현성 분석)

  • Kim, Se Hyeon;Bae, Sun Myung;Seo, Dong Rin;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The pre-treatment QA using Portal dosimetry for Volumetric Arc Therapy To analyze whether maintaining the reproducibility depending on various factors. Materials and Methods : Test was used for TrueBeam STx$^{TM}$ (Ver.1.5, Varian, USA). Varian Eclipse Treatment planning system(TPS) was used for planning with total of seven patients include head and neck cancer, lung cancer, prostate cancer, and cervical cancer was established for a Portal dosimetry QA plan. In order to measure these plans, Portal Dosimetry application (Ver.10) (Varian) and Portal Vision aS1000 Imager was used. Each Points of QA was determined by dividing, before and after morning treatment, and the after afternoon treatment ended (after 4 hours). Calibration of EPID(Dark field correction, Flood field correction, Dose normalization) was implemented before Every QA measure points. MLC initialize was implemented after each QA points and QA was retried. Also before QA measurements, Beam Ouput at the each of QA points was measured using the Water Phantom and Ionization chamber(IBA dosimetry, Germany). Results : The mean values of the Gamma pass rate(GPR, 3%, 3mm) for every patients between morning, afternoon and evening was 97.3%, 96.1%, 95.4% and the patient's showing maximum difference was 95.7%, 94.2% 93.7%. The mean value of GPR before and after EPID calibration were 95.94%, 96.01%. The mean value of Beam Output were 100.45%, 100.46%, 100.59% at each QA points. The mean value of GPR before and after MLC initialization were 95.83%, 96.40%. Conclusion : Maintain the reproducibility of the Portal Dosimetry as a VMAT QA tool required management of the various factors that can affect the dosimetry.

  • PDF