• Title/Summary/Keyword: 회전 보

Search Result 1,098, Processing Time 0.027 seconds

Rotator Interval Lesion: Instability & Stiffness (회전근 간 병변: 불안정증과 강직)

  • Oh Jeong-Hwan;Park Jin-Young
    • Clinics in Shoulder and Elbow
    • /
    • v.8 no.1
    • /
    • pp.5-8
    • /
    • 2005
  • Rotator interval should be as loose as possible, though not so loose as to break the shoulder mechanism. This region is a source of significant shoulder pathology resulting in patient discomfort and dysfunction. The clinical features fall into two categories. Rotator interval tightness is associated with impingement, contracture with adhesive capsulitis, and widening with anteroinferior, posterior or multidirectional instability. Coracoid impingement can cause damage to the structures of the rotator interval, Injury of the interval are associated with subscapularis tears as well as biceps tendinitis, fraying, subluxation, and dislocation. An understanding of the normal and pathologic anatomy can lead to successful diagnosis and treatment of lesions in the rotator interval.

Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution (Borate 완충용액에서 니켈 회전원판전극의 부식과 부동화)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.533-539
    • /
    • 2013
  • The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the $Ni(OH)_2$ oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.

Fuzzy Sky-hook Control of Semi-active Suspension System Using Rotary MR Damper (회전형 MR 댐퍼를 이용한 반능동 현가장치의 퍼지 스카이-훅 제어)

  • Cho, Jeong-Mok;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.701-706
    • /
    • 2007
  • Recently, a number of researches about linear magnetorheological(MR) damper using valve-mode characteristics of MR fluid have sufficiently undertaken, but researches about rotary MR damper using shear-mode characteristics of MR fluid are not enough. In this paper, we performed vibration control of shear-mode MR damper for unlimited rotating actuator of mobile robot. Also fuzzy logic based vibration control for shear-mode MR damper is suggested. The parameters, like scaling factor of input/output and center of the triangular membership functions associated with the different linguistic variables, are tuned by genetic algorithm. Simulation results demonstrate the effectiveness of the fuzzy-skyhook controller for vibration control of shear-mode MR damper under impact force.

A Convergent Study on Flow at Rotor of Washing Machine (세탁기 내부의 회전날개에서의 유동에 관한 융합 연구)

  • Choi, Kye-Kwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.237-241
    • /
    • 2020
  • The flow analyses in this study were executed on the three washing machine models with the rotors like real shapes. On the pressures and speeds for the left, right and bottom planes of rotors, model C was generally found to have the greatest pressure on the flow, more than twice as much as model A, and in order of model B and model A. At the streamline velocities of flow on the side of the rotating blades of models A, B and C, model C had the greatest rate of flow overall, which was 1.7 times higher than model A, followed by model B and model A. In case of model C, the number of blades is smaller than model A or model B, but the thickness of lower rotor becomes thicker. It can be seen that model C improves the washing performance due to the high flow pressure and high flow rate. Also, it is seen that this study is adequate at the efficient design with durability of the washing machine rotor practically and the aesthetic convergence of the rotor.

A study on the relationship of the mandibular symphysis and anterior alveolar and skeletal morphology according to the rotational growth pattern of mandible in skeletal Class III malocclusion (하악골 회전성장 양상에 따른 골격성 III급 부정교합자의 이부 및 상하악 절치부의 형태적 특성에 관한 연구)

  • Kim, Seok-Jun;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.29 no.3 s.74
    • /
    • pp.303-315
    • /
    • 1999
  • The aim of this study was to evaluate the morphology of the mandibular symphysis and anterior alveolar and skeletal relationship under the influence of the rotational growth pattern of mandible in skeletal Class III malocclusion. A total of U untreated adult subjects were divided into two groups-forward rotational growth pattern group, backward rotational growth pattern group-according to the suggestion of Skieller et al.. The antero-posterior position, vertical relationship, mandibular symphysis and anterior alveolar and skeletal relationship were assessed on lateral cephalometric radiographs. Mandibular symphysis and anterior alveolar and skeletal relationship in each subject were studied and the following conclusions were drawn : 1. Concerning the antero-posterior position, forward rotational growth pattern group showed significantly larger SNA, SNB. Conceming the vertical relationship, all measurements showed statistically significant differences. 2. Forward rotatioal growth pattern group showed significantly larger IMPA, MnAD, backward rotational growth pattern group showed significantly larger MxABH. 3. There was no statistically significant difference in symphysis ratio to mandibular plane between forward and backward rotational growth pattern group. 4. In the correlative analysis of rotational growth pattern of mandible and mandibular symphysis, anterior alveolar and skeletal relationship, statistically significant correlations in overbite, IMPA, MnAD, symphysis width were showed.

  • PDF

Correlations between Axial Rotation of Toric Soft Contact Lenses and Corneal Eccentricity according to the Wearing Time and Gaze Directions (착용시간 및 응시방향에 따른 토릭소프트콘택트렌즈의 축 회전과 각막이심률과의 상관관계)

  • Seo, Woo Hyun;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2016
  • Purpose: The present study was aimed to investigate the effect of corneal eccentricity on the axial rotation when wearing toric soft contact lenses were worn for certain time and changing the gaze directions. Methods: Toric soft contact lenses with double thin zone design applied on 85 of with-the-rule astigmatic eyes. Then, rotational direction and amount of contact lenses were measured after 15 minutes and 6 hours of lens wear. The difference was further compared and analyzed according to corneal eccentricity. Results: The rotation of toric lens showed a tendency to rotate to temporal direction in all gaze directions except temporal-upper direction in all groups of corneal eccentricity. The amount of lens rotation in the frontal gaze direction exhibited a negative correlation since the amount was decreased with increasing corneal eccentricity after both 15 minutes and 6 hours of lens wearing. In many cases, the cornea with small eccentricity also showed the lens rotation larger than $10^{\circ}$. The difference in rotational amount after 15 minutes of toric lens wear was small according to the corneal eccentricity however, the change of rotational amount of contact lens according to corneal eccentricity was shown after 6 hours of lens wear. Conclusions: The present study revealed that the amount of axial rotation was largely varied according to the wearer's corneal eccentricity when wearing toric lens and the rotational amount after certain time of lens was also affected by corneal eccentricity. Thus, it is suggested that the selection of toric soft contact lenses based on corneal eccentricity is necessary.

Free Vibration of Horizontally Curved Beams with Clothoid Transient Curve (크로소이드 완화곡선을 갖는 수평 곡선보의 자유진동)

  • 이병구;진태기;이태은
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.189-195
    • /
    • 2002
  • This paper deals with the free vibration of horizontally curved beams with transition currie. Based on the dynamic equilibrium equations of a curved beam element subjected to the stress resultants and inertia forces, the governing differential equations are derived for the out-of-plane vibration of curved beam with variable curvature. These equations are applied to the beam having transition curve in which the clothiod curve is chosen in this study. The differential equations are solved by the numerical methods lot calculating the natural frequencies and mode shapes. For verifying theories developed herein, the frequency parameters obtained from this studs and ADINA are compared with each other. As the numerical results, the various parametric studies effecting on natural frequencies are investigated and those results are presented in tables and figures.

Vibration Analysis of a Rotating Cantilever Beam Undergoing Impulsive Force Using Wavelet Transform (Wavelet Transform을 이용한 충격력을 받는 회전하는 외팔 보의 진동 특성 해석)

  • Park, Ho-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1024-1032
    • /
    • 2008
  • The vibration characteristics of a rotating cantilever beam undergoing impulsive force are investigated using wavelet transformation. The transient response induced by the impulsive force and the rigid body motion of the beam are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. The vibration characteristics of the beam can be analyzed in time-frequency domain with the wavelet transform method. Therefore, the effects of the impulsive force on the transient vibration characteristics of the beam can be investigated more effectively.

Experimental Verification of Flexible Multibody Dynamic Simulations for A Rotating Beam (회전 외팔보에 대한 유연 다물체 동역학 시뮬레이션의 실험적 검증)

  • Kim, Seong-Su;Gang, Yeon-Jun;Lee, Gyu-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.267-274
    • /
    • 2002
  • Using a flexible rotating beam test bed, experimental verification of a flexible multibody dynamic simulations for a rotating beam model has been carried out. The test bed consists of a flexible arm, harmonic driver reducer, AC servo motor and DSP board with PC. The mechanical ports of the test bed has been designed using 3D CAD program. For the simulation model, mass and moment of inertia of each part of the flexible rotating beam test bed are also obtained from 3D CAD model. In the flexible multibody dynamic simulations, the substructuring model has been established to capture nonlinear effects of the flexible rotating beam. Through the experimental verification, substructuring model provides better results than those from the linear model in the high speed rotation.

Modal Characteristic Optimization of Rotating Cantilever Beams via Shape Variation of Cross-section by Multi-stage Spline Function (다단 Spline 곡선에 의한 단면형상 변화를 통한 회전 외팔보의 진동특성 최적화)

  • 조정은;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • When structures undergo rotating motion, their modal characteristics often vary significantly. The variations of modal characteristics are determined from their geometric shapes and their rotating angular speed. Since the modal characteristics vary during the operation of the structures, they should be carefully scrutinized. In this paper, rotating cantilever beams are chosen as design targets which need to meet some specific design requirements. The thickness and the width of the rotating beams are assumed as multi-stage spline functions and the stage values for the thickness and the width are used as design variables for the optimization problems.