• Title/Summary/Keyword: 회전하는 블레이드

Search Result 277, Processing Time 0.025 seconds

The Mach-scale Performance Test of Next-Generation Blade(NRSB- 1M/2M) (차세대 블레이드(NRSB-1M/2M)의 마하 스케일 성능시험)

  • Song, Geun-Ung;Kim, Jun-Ho;Kim, Seung-Ho
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.27-36
    • /
    • 2006
  • This paper describes the performance test procedures and results of NRSB-1M and NRSB-2M Not only aerodynamic performance test but also sound measurement test were performed for the small-scaled blades in the ground Total thrusts and torques of the rotor were measured using rotating balance for aerodynamic performance test. Sound pressure levels were measured using microphone in 1.64D distance for sound measurement test. Non-dimensionalized test data are compared and analyzed. Consequently, It was confirmed that NRSB-2 was better than NRSB-1.

  • PDF

Optimum Shape Design of Counter-rotating Wind Turbine System (상반회전 풍력발전 시스템의 설계형상 최적화에 관한 연구)

  • Lee, Ju-Young;Jung, Sung-Nam;Song, Seung-Ho;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.373-375
    • /
    • 2003
  • 상반회전 풍력발전 시스템의 경우 전방에 위치한 로터의 후류 효과를 적절히 반영하여 설계에 이용해야 한다. 본 연구에서는 이러한 로터의 후류효과 및 블레이드의 실속후 모델을 고려하여 30kW급 상반회전시스템의 설계형상에 대한 검토연구를 수행하였다 기본공력이론은 모멘텀 이론과 2차원 준정상 공기력 이론을 통합한 형태를 사용하였다. 로터의 후류영향을 고려하기 위해 축소형 풍차 블레이드 모델에 대한 풍동시험 결과를 적절히 이용하며, 이로부터 보조로터를 지난 후류의 축속도 및 각속도 성분을 결정하였다. 최종적으로 상반회전 시스템의 로터 반경 및 상호 이격거리 등을 고려한 성능해석을 수행하고 이로부터 최적 설계형상에 대한 파라미터 연구결과를 제시하였다.

  • PDF

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

Online Strain Measurement at Multiple Points on a Rotating Blade with Fiber Bragg Grating Sensors and a Rotary Optical Coupler (광섬유 격자 센서와 회전 광학 커플러를 사용한 회전하는 블레이드 여러 지점에서의 온라인 변형률 측정)

  • Lee, Jong-Min;Hwang, Yo-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.77-82
    • /
    • 2008
  • Strain-gauges have been dominantly used to measure strain at various points on a rotor, however, either a slip ring or telemetry has to be used to send sensor signals to data acquisition instruments at stationary side. Both slip ring and telemetry have numerous inherent problems which force severe limitations in real applications. This paper introduces a new rotor condition monitoring system using FBG(Fiber Bragg Grating) sensors and a rotary optical coupler. A single optical fiber with many FBG sensors is installed on the rotor and an optical dynamic interrogator is installed at stationary side. The sensor signal connection between rotating part and stationary part is made by the rotary optical coupling method which makes use of light's unique characteristic-light travels through space. Broad band light source from the interrogator travels to the optical fiber on the rotor and reflected FBG sensor signals travel back to the optical fiber on stationary side and are connected to the interrogator. Rotary optical coupler's insertion loss change due to rotation is compensated by using a reference sensor installed at the center of the rotor. The proposed system's performance has been successfully demonstrated by accurately measuring strains at 5 points on a blade rotating at high speed.

Dynamic Characteristics of Helicopter Bearingless Main Rotor (헬리콥터 무베어링 주로터의 동특성 시험)

  • Yun, Chul Yong;Song, Keun Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.439-446
    • /
    • 2016
  • The characteristics of bearingless main rotor of helicopter are investigated through non-rotating tests and rotating tests. The stiffness and natural frequencies of rotor blades, flexbeam, and torque tube which are core components of baearingless rotor are measured to obtain input material properties for rotor analysis. The functional test on ground for assembly of one hub with damper, snubber, and no blade is carried out to check interfaces between components, kinematics of components, and pitch motion ranges under applied loads including centrifugal load. The 4-bladed bearingless rotor with 5.82m of rotor radius is tested on the whirl tower with rotation plane of 9.65m height. The thrust and power are measured to obtain hover performance and the frequencies and dampings of the rotor are obtained by excitation of cyclic pitch by hydraulic actuators.