• Title/Summary/Keyword: 회전력

Search Result 974, Processing Time 0.031 seconds

Effect of Bone Quality on Insertion Torque during Implant Placement; Finite Eelement Analysis (임플란트 식립 시 골질이 주입회전력에 미치는 영향에 관한 삼차원 유한요소 분석)

  • Jeong, Jae Doug;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.2
    • /
    • pp.109-123
    • /
    • 2009
  • The aim of the study was to assess the influence of insertion torque of bone quality and to compare axial force, moment and von Mises stress using finite element analysis of plastoelastic property for bone stress and strain by dividing bone quality to its thickness of cortical bone, density of trabecular bone and existence of lower cortical bone when implant inserted to mandibular premolar region. The $Br{\aa}nemark$ MKIII. RP implant and cylindrical bone finite model were designed as cortical bone at upper border and trabecular bone below the cortical bone. 7 models were made according to thickness of cortical bone, density of trabecular bone and bicortical anchorage and von Mises stress, axial force and moment were compared by running time. Dividing the insertion time, it seemed 300msec that inferior border of implant flange impinged the upper border of bone, 550msec that implant flange placed in middle of upper border and 800msec that superior border of implant flange was at the same level as bone surface. The maximum axial force peak was at about 500msec, and maximum moment peak was at about 800msec. The correlation of von Mises stress distribution was seen at both peak level. The following findings were appeared by the study which compared the axial force by its each area. The axial force was measured highest when $Br{\aa}nemark$ MKIII implant flange inserts the cortical bone. And maximal moment was measured highest after axial force suddenly decreased when the flange impinged at upper border and the concentration of von Mises stress distribution was at the same site. When implant was placed, the axial force and moment was measured high as the cortical bone got thicker and the force concentrated at the cortical bone site. The influence of density in trabecular bone to axial force was less when cortical bone was 1.5 mm thick but it might be more affected when the thickness was 0.5 mm. The total axial force with bicortical anchorage, was similar when upper border thickness was the same. But at the lower border the axial force of bicortical model was higher than that of monocortical model. Within the limitation of this FEA study, the insertion torque was most affected by the thickness of cortical bone when it was placed the $Br{\aa}nemark$ MKIII implant in premolar region of mandible.

Influence of Tungsten Carbide/Carbon Coating on the Preload and Tightening Torque of Implant Abutment Screws (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중 및 조임회전각에 미치는 영향)

  • Shin, Hyon-Mo;Cho, Wook;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.1
    • /
    • pp.53-59
    • /
    • 2009
  • The purpose of this study was to clarify the clinical efficiency of tungsten carbide/carbon coating on obtaining optimal preload of abutment screw compared with non-coated screw in external-hex implant system. In the present work, rotational value and the compressive force between abutment and fixture of abutment screws without coating and with coating tightened to 30Ncm were measured. Mean compressive force of coated screw was 504.6N. Then uncoated screw was tightened to clamping the abutment and the implant to 504.6N, and the tightening torque value and the rotational value was recorded. The following conclusions were drawn within the limitation of this study. Compressive force of coated screw was higher than that of uncoated screw after tightening at 30Ncm. The tightening torque that was nedeed to clamping the uncoated screw equal to coated screw tightened to 30Ncm was 55.6Ncm. In case of equal compressive force, there was no significant difference in rotation value between coated and uncoated screw.

Screw Joint Stability under Cyclic Loading of Zirconia Implant Abutments (지르코늄 임플란트 지대주의 나사결합부 안정성에 관한 연구)

  • Lee, Mi-Soon;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.164-173
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the effect of abutment material on screw-loosening before and after cyclic loading. Among the different materials of abutments, zirconia and metal abutment were used. Material and methods: Two types of implant systems: external butt joint(US II, Osstem Implant, Korea) and internal conical joint(GS II, Osstem Implant, Korea) were used. In each type, specimens were divided into two different kinds of abutments: zirconia and metal(n=5). The implant was rigidly held in a special holding to device ensure fixation. Abutment was connected to 30 Ncm with digital torque gauge, and was retightened in 30 Ncm after 10 minutes. The initial removal torque values were measured. The same specimens were tightened in 30 Ncm again and held in the cycling loading simulator(Instron, USA) according to ISO/FPIS 1480. Cycling loading tests were performed at loads 10 to 250 N, for 1 million cycles, at 14 Hz,(by subjecting sinusoidal wave from 10 to 250 N at a frequency of 14 Hz for 1 million cycles,) and then postload removal torque values were evaluated. Results: 1. In all samples, the removal values of abutment screw were lower than tightening torque values(30 Ncm), but the phenomenon of the screw loosening was not observed. 2. In both of the implant systems, initial and postload removal torque of zirconia abutment were significantly higher than those of metal abutment(P<.05). 3. In both of the implant systems, the difference in removal torque ratio between zirconia abutment and metal abutment was not significant(P>.05). 4. In metal abutments, the removal torque ratio of GS II system(internal conical joint system) was lower than that of US II system(external butt joint system)(P<.05). 5. In zirconia abutments, the difference in removal torque ratio between the two implant systems was not significant(P>.05). Conclusion: Zirconia abutment had a good screw joint stability in the condition of one million cycling loading.

Influence of Implant Abutment Systems on Detorque Value and Screw Joint Stability (임플랜트 지대주 종류가 나사풀림력과 연결부의 안정성에 미치는 영향)

  • Bae, Byung-Ryong;Choi, Yu-Sung;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.2
    • /
    • pp.97-109
    • /
    • 2010
  • Purpose : This study was designed to evaluate the influence of implant abutment materials on detorque value and screw joint stability before and after dynamic fatigue test. Materials & Methods : The external hexagonal fixture and three different groups of abutment (titanium abutments, zirconia abutments, and UCLA abutments) were used. The detorque value before loading and after loading (cyclic loading up to $10^5$ cycles) of the abutment screw were measured. Result : 1. There was no significant difference in detorque value before loading among the each group. 2. There was no significant difference in detorque value after loading among the each group. 3. Detorque values before and after cyclic loading in each group were not significantly different. 4. There was no significant difference in loss percentage of removal torque before loading among the each group. 5. There was no significant difference in loss percentage of removal torque after loading among the each group. 6. There was no significant difference in loss percentage of removal torque according to loading among the each group. Conclusion : Short term screw loosening of three types of abutment was not significantly different. When bite force was applied, there was no significant difference in screw loosening between before loading and after loading.

Research of Upper limb Torque on the Hand Bike by Degree of Seat using Cybex (싸이벡스를 이용한 핸드바이크 시트 각도의 상지 회전력에 관한 연구)

  • Kim, Dong-Ok;You, Yeon-Ho;Rhee, Kun-Min
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.287-294
    • /
    • 2016
  • Based on upper limb torque by different angles of a back, distance between crank axis and chest and angles of hand-grips, this research is to develop variable hand bikes. By doing so, it is to offer guidance for its design. For this research three normal persons took part in the experiment. Results are as follows. First, upper limb torque was found to be the highest at 50 degree of a back and muscle endurance was shown to be the highest at 80 degree of a back. It means that as a back of a chair gets lower the speed and efficiency becomes better, which contradicts the subjective fact that K-type hand bikes would show the highest speed. Second, among types of grips of hand bikes 45 degree ones have been shown to be the ones with the highest torque. This is due to proper distribution of power of joints in arms, elbows, and shoulders. Third, in case of distance of 45cm between crank axis and chest, it has shown the most efficient torque. This is because of the effect of gravity and exhaustion when handling.

지능형 고속 회전기 요소 및 시스템의 안정화 해석/설계기술

  • 김창호
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.26-28
    • /
    • 2001
  • 최근의 회전 기계 시스템은 단위 중량 당 에너지 효율을 높이기 위하여 고속화 소형화(경량화) 추세이며 이에 따라 불안정성이 증대되는 경향이 있다. 이를 개선하기 위하여는 회전기 요소의 연구가 필수적인데 이는 결국 기계시스템의 내구성 및 안전과 경쟁력 향상에도 직결되는 중요한 사항이 된다. 여기에서는 고속회전기 요소 및 시스템 안정화 해석설계 기술과 관련. 한국과학기술연구원(KIST) 트라이볼로지 연구센터의 로터다이나믹스팀이 현재 보유하고 있거나 개발 중인기술들을 소개함으로써 향후 고속화를 통한 회전기계 시스템의 세계적 경쟁력 향상은 물론 새로운 관심사로 떠오르는 지능형 회전기기 시스템과 초소형 회전기기 시스템에 관련된 연구 개발을 소개하고자 한다.(중략)

  • PDF

On the study of critical revolution speed and balancing problems in the automobile drive axle (자동차용 추진축의 위험회전속도와 balancing문제 소고)

  • 서용권
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.25-30
    • /
    • 1980
  • 자동차용 추진축의 위험회전속도를 원심력에 의한 탄성변형의 관계로부터 유도하여 보았다. 회전체의 unbalance량은 보통 회전속도에 관계없이 거의 일정하나 자동차용 추진축과 같이 외 경에 비하여 전장이 길고 고속회전하는 경우에는 축의 탄성변형에 의하여 unbalance량이 커진다. 회전속도에 따른 unbalance 변화량을 역시 원심력-탄성변형관계로부터 구하고 balancing을 위한 최적회전속도, tube의 편심도 기타 balancing 작업을 어렵게 하는 요소들에 대하여 정리하여 보았다.

  • PDF

The Effect of Surface Area Implant on Bonding Strength between Implant and Bone (임프란트의 외표면적이 임프란트와 골과의 결합력에 미치는 영향)

  • Jo, Seong-Am
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.613-615
    • /
    • 1998
  • 임프란트의 외표면적이 골과의 결합의 정도에 미치는 영향을 알아보기 위하여 10개의 grade ll 티타늄 임프란트를 사용하여 이를 직경 3미리와 5미리의 2개의 군으로 나누어 10마리의 토끼의 무릅뼈에 삽입하였다. 6주후에 동물들을 희생시키고 회전제거력을 Tohnichi 15-BTG-N Torque garge Manometer로 측정하여 5nmwlrrud 그룹의 회전제거력이 3mm직경 그룹의 회전제거력보다 큰 것을 확인하였다. (p=0.008)

  • PDF

A Study on the Development of a 10KW Class Dual Rotor Counter-Rotating Wind Turbine Generator System with Low Wind Speed/High Efficiency and Its Field Test (저풍속/고효율 10KW급 상호역회전 풍력발전시스템 개발 및 실증실험에 관한 연구)

  • Heo, Hyun-Kang;Jange, Tae-Jong;Kim, Sang-Uk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.495-499
    • /
    • 2009
  • 본 논문에서는 상호역회전 풍력발전기와 New Yaw System 실증시험에 대하여 제시한다. 상호역회전 풍력발전기는 공기의 유동을 가진 운동에너지의 공기역학적(aerodynamic) 특성을 이용하여 동일한 바람방향에 대해 상호 반대방향으로 회전하는 Front Blade와 Rear Blade를, Generator의 Rotor와 Stator에 각각 결합 형성한 것으로, Generator와 Dual Blade의 회전력이 원심력이 아닌 구심력으로 변환되어 무게중심이 균형을 이루게 한다. 이렇게 변환된 구심력은 회전구동부분의 편마모 현상, 소음발생 현상 및 불균형 톨크 발생 현상 감소효과가 공히 구현되도록 하여 풍력발전기의 구조적 안정성 및 발전효율 증대효과를 얻을 수 있도록 한 기술이다.

  • PDF

Assisting High School Students to Redefine the Principle of Coriolis Force (전향력 발생 원리를 고등학생들에게 설명하기 위한 새로운 방법)

  • Jang, Swung-Hwan;Park, Hyo-Jin;Cho, Kyu-Seong;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.73-83
    • /
    • 2011
  • A new method was developed to better understand the principle of Coriolis force. We also investigated the understanding of 5 10th grade students and analyzed their responses. Since no clear explanation about the nature of a rotating disk is provided in school textbooks, it tends to be misunderstood as the earth surface revolving on its axis pointing to the North Pole. This study was carried out focusing on the fact that a rotating disk is the tangential plane at arbitrary latitude. Results showed that there are changes in students' conceptions on the principle of Coriolis force with a new understanding of the rotating disk. In conclusion, a new method used in this study helped students better understand the link between Coriolis force and rotating disk. The method would be helpful to clarify the principle of Coriolis force in school science.