• Title/Summary/Keyword: 회전된 얼굴 검출

Search Result 56, Processing Time 0.02 seconds

Implementation of an Effective Human Head Tracking System Using the Ellipse Modeling and Color Information (타원 모델링과 칼라정보를 이용한 효율적인 머리 추적 시스템 구현)

  • Park, Dong-Sun;Yoon, Sook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.684-691
    • /
    • 2001
  • In this paper, we design and implement a system which recognizes and tracks a human head on a sequence of images. In this paper, the color of the skin and ellipse modeling is used as feature vectors to recognize the human head. And the modified time-varying edge detection method and the vertical projection method is used to acquire regions of the motion from images with very complex backgrounds. To select the head from the acquired candidate regions, the process for thresholding on the basis of the I-component of YIQ color information and mapping with ellipse modeling is used. The designed system shows an excellent performance in the cases of the rotated heads, occluded heads, and tilted heads as well as in the case of the normal up-right heads. And in this paper, the combinational technique of motion-based tracking and recognition-based tracking is used to track the human head exactly even though the human head moves fast.

  • PDF

Facial Contour Extraction in PC Camera Images using Active Contour Models (동적 윤곽선 모델을 이용한 PC 카메라 영상에서의 얼굴 윤곽선 추출)

  • Kim Young-Won;Jun Byung-Hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.633-638
    • /
    • 2005
  • The extraction of a face is a very important part for human interface, biometrics and security. In this paper, we applies DCM(Dilation of Color and Motion) filter and Active Contour Models to extract facial outline. First, DCM filter is made by applying morphology dilation to the combination of facial color image and differential image applied by dilation previously. This filter is used to remove complex background and to detect facial outline. Because Active Contour Models receive a large effect according to initial curves, we calculate rotational degree using geometric ratio of face, eyes and mouth. We use edgeness and intensity as an image energy, in order to extract outline in the area of weak edge. We acquire various head-pose images with both eyes from five persons in inner space with complex background. As an experimental result with total 125 images gathered by 25 per person, it shows that average extraction rate of facial outline is 98.1% and average processing time is 0.2sec.

  • PDF

Face Tracking for Multi-view Display System (다시점 영상 시스템을 위한 얼굴 추적)

  • Han, Chung-Shin;Jang, Se-Hoon;Bae, Jin-Woo;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2C
    • /
    • pp.16-24
    • /
    • 2005
  • In this paper, we proposed a face tracking algorithm for a viewpoint adaptive multi-view synthesis system. The original scene captured by a depth camera contains a texture image and 8 bit gray-scale depth map. From this original image, multi-view images can be synthesized which correspond to viewer's position by using geometrical transformation such as a rotation and a translation. The proposed face tracking technique gives a motion parallax cue by different viewpoints and view angles. In the proposed algorithm, tracking of viewer's dominant face initially established from camera by using statistical characteristics of face colors and deformable templates is done. As a result, we can provide motion parallax cue by detecting viewer's dominant face area and tracking it even under a heterogeneous background and can successfully display the synthesized sequences.

3D Face Modeling based on 3D Morphable Shape Model (3D 변형가능 형상 모델 기반 3D 얼굴 모델링)

  • Jang, Yong-Suk;Kim, Boo-Gyoun;Cho, Seong-Won;Chung, Sun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.212-227
    • /
    • 2008
  • Since 3D face can be rotated freely in 3D space and illumination effects can be modeled properly, 3D face modeling Is more precise and realistic in face pose, illumination, and expression than 2D face modeling. Thus, 3D modeling is necessitated much in face recognition, game, avatar, and etc. In this paper, we propose a 3D face modeling method based on 3D morphable shape modeling. The proposed 3D modeling method first constructs a 3D morphable shape model out of 3D face scan data obtained using a 3D scanner Next, the proposed method extracts and matches feature points of the face from 2D image sequence containing a face to be modeled, and then estimates 3D vertex coordinates of the feature points using a factorization based SfM technique. Then, the proposed method obtains a 3D shape model of the face to be modeled by fitting the 3D vertices to the constructed 3D morphable shape model. Also, the proposed method makes a cylindrical texture map using 2D face image sequence. Finally, the proposed method builds a 3D face model by rendering the 3D face shape model with the cylindrical texture map. Through building processes of 3D face model by the proposed method, it is shown that the proposed method is relatively easy, fast and precise than the previous 3D face model methods.

Estimation of a Driver's Physical Condition Using Real-time Vision System (실시간 비전 시스템을 이용한 운전자 신체적 상태 추정)

  • Kim, Jong-Il;Ahn, Hyun-Sik;Jeong, Gu-Min;Moon, Chan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.213-224
    • /
    • 2009
  • This paper presents a new algorithm for estimating a driver's physical condition using real-time vision system and performs experimentation for real facial image data. The system relies on a face recognition to robustly track the center points and sizes of person's two pupils, and two side edge points of the mouth. The face recognition constitutes the color statistics by YUV color space together with geometrical model of a typical face. The system can classify the rotation in all viewing directions, to detect eye/mouth occlusion, eye blinking and eye closure, and to recover the three dimensional gaze of the eyes. These are utilized to determine the carelessness and drowsiness of the driver. Finally, experimental results have demonstrated the validity and the applicability of the proposed method for the estimation of a driver's physical condition.

  • PDF

Deep learning based face mask recognition for access control (출입 통제에 활용 가능한 딥러닝 기반 마스크 착용 판별)

  • Lee, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.395-400
    • /
    • 2020
  • Coronavirus disease 2019 (COVID-19) was identified in December 2019 in China and has spread globally, resulting in an ongoing pandemic. Because COVID-19 is spread mainly from person to person, every person is required to wear a facemask in public. On the other hand, many people are still not wearing facemasks despite official advice. This paper proposes a method to predict whether a human subject is wearing a facemask or not. In the proposed method, two eye regions are detected, and the mask region (i.e., face regions below two eyes) is predicted and extracted based on the two eye locations. For more accurate extraction of the mask region, the facial region was aligned by rotating it such that the line connecting the two eye centers was horizontal. The mask region extracted from the aligned face was fed into a convolutional neural network (CNN), producing the classification result (with or without a mask). The experimental result on 186 test images showed that the proposed method achieves a very high accuracy of 98.4%.