회전된 얼굴 검출은 많은 응용 분야에서 필요하지만 회전에 따른 얼굴 모양의 큰 변화로 인해 여전히 어려운 분야이다. 이 논문에서는 회전의 영향을 받지 않는 극좌표 변환 방법과 변환된 영상을 이용하여 회전얼굴을 효과적으로 검출하는 방법이 제안되었다. 제안한 극좌표계 변환 방법은 회전 각도와 무관하게 눈, 입 등과 같은 얼굴 구성 요소들의 위치가 항상 유지되기 때문에 얼굴 구성요소들 간의 공간 정보가 유지되며, 이로 인해 회전 효과가 제거된다. 극좌표계 변환된 영상을 정면 얼굴 검출에 사용되는 AdaBoost를 이용하여 학습하고 회전 얼굴을 검출하였다. 비얼굴 영상을 LBP를 이용하여 학습하고 검출한 얼굴을 검증하였다. BioID 데이터베이스에 있는 영상을 회전하여 얻은 3600개 얼굴영상에 대한 실험 결과 96.17%의 회전얼굴 검출률을 얻었다. 또한, 다수의 회전 얼굴이 포함된 배경이 있는 영상에서 회전 얼굴들을 정확하게 검출하였다.
보안 시스템을 비롯한 많은 얼굴 인식의 응용들에서 수직 방향의 얼굴이 입력된다고 가정한다. 그러나 보다 일반적인 환경에서 인물에 대한 인식을 하려면 기울어진 얼굴의 검출이 가능해야 한다. 기존의 많은 방식들에서 영상 내에 존재하는 회전된 얼굴을 검출하기 위해 얼굴 검출을 위한 윈도우를 반복적으로 회전시키며 얼굴검출기를 적용함으로써 얼굴의 회전각을 구한다. 그러나 이러한 방식은 많은 계산량을 필요로 하는 단점이 있다. 본 논문에서는 점들의 집합이 주어질 때 그 점들의 대칭축을 검출하는 방법을 제안한다. 또한 얼굴이 대칭이라는 점에 착안해서 얼굴검출 윈도우 내의 에지 포인트들로 부터 대칭축을 추출함으로써 검출된 대칭축 방향에 대해서만 얼굴 검출기를 적용함으로써 얼굴의 회전각을 빠르고 정밀하게 검출하는 방법을 제안한다. 실험에 사용된 데이터베이스의 경우 제안된 알고리즘이 평균 $0^{\circ}$, 표준편차 $3^{\circ}$의 오차 범위에서 얼굴의 대칭축을 검출함을 보였다.
이 논문에서는 회전각도에 무관하게 회전 얼굴과 회전각도를 효과적으로 검출하는 방법이 제안되었다. 회전된 얼굴 검출은 회전에 따른 얼굴 외형의 큰 변화로 인해 어려운 분야이다. 제안한 극좌표계 변환 방법은 회전 각도와 무관하게 얼굴 구성요소들의 위치 정보가 유지되기 때문에 회전으로 인한 얼굴의 외형 변화가 없게 된다. 이에 따라 회전이 없는 정면 얼굴 검출에 사용되지만 회전에 민감한 특성을 갖는 HOG와 같은 특징들이 회전얼굴을 검출하는 과정에서 효과적으로 사용될 수 있다. 극좌표계 변환된 영상에서 얻은 HOG 특징을 SVM을 이용하여 학습하고 회전 얼굴을 검출하였다. 학습 데이터는 회전이 없는 정면 얼굴 영상만을 사용하였다. 3600개 회전 얼굴 영상에 대한 실험 결과 97.94 %의 회전각도 검출률을 얻었다. 또한, 다수의 회전 얼굴이 포함된 배경이 있는 영상들에서 회전 얼굴들의 위치와 회전 각도를 정확하게 검출하였다.
얼굴 검출은 얼굴 인식을 위한 첫번째 단계로써, 입력 영상에서의 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아내야 한다. 얼굴의 위치를 찾아내는 것은 크기변화, 조명변화, 회전과 같은 다양한 상황이 발생하기 때문에 쉽지 않다. 본 논문에서는 다양한 문제 중 얼굴이 회전되었을 때 얼굴을 검출하는 방법에 초점을 맞추었다. 먼저, 다인종 얼굴 데이타로부터 얼굴의 존재 유무와 얼굴의 위치 및 크기를 알아낸 뒤, 후보영역에서 두 눈을 검출하다. 두 눈을 이용하여 회전각도를 찾아내고 베이지안 분류기를 이용하여 정면얼굴이 되도록 다시 회전시키는 방법을 이용하였다. 다인종에 데이타를 이용한 회전된 얼굴에 대해서 얼굴검출 알고리즘을 실험하여 결과를 제시하였다.
AdaBoost 알고리즘을 이용한 얼굴 검출 방법은 가장 빠르고 신뢰성 있는 얼굴 검출 알고리즘의 하나로 이를 향상하거나 확장한 많은 알고리즘들이 제안되었다. 그러나 이전의 접근들은 대부분 정면 얼굴만을 다루고 있고 AdaBoot 알고리즘을 정면과 기울어진 얼굴에 동일한 특징으로 적용함으로써 기울어진 얼굴에 대한 분별 성능이 제한적이었다. 또한 회전된 얼굴을 검출하기 위하여 입력된 영상을 회전하여 정면 얼굴 검출 방법을 적용하거나 회전된 각도에 따라 다른 검출기를 적용하는 기존 기법들은 연산량이 많고 검출률이 저하되는 문제를 가지고 있다. 본 논문에서는 이러한 문제를 극복하기 위해 JointBoost를 이용한 기울어진 얼굴 검출 방법을 제안한다. JointBoost를 통해 클래스간의 공유된 feature들를 찾음으로써 연산량과 샘플 복잡도를 감소시켰다. 실험 결과를 통해 제안된 방법의 검출률이 동일한 반복 횟수를 가지는 학습에서 기존의 AdaBoost 기법에 비해 2% 이상 우수함을 보인다. 또한 제안된 방법은 얼굴의 존재를 검출할 뿐만 아니라 기울어진 방향에 대한 정보도 제공할 수 있다.
본 논문에서는 Zernike 모멘트를 이용한 새로운 얼굴 검출 기법을 제안한다. 입력 영상을 가변 크기의 영역으로 탐색하면서 Zernike 모멘트를 계산하여 신경망에 의해 얼굴과 비얼굴 영역으로 분류하여 얼굴을 검출한다. 직교 모멘트의 재구성 능력으로 인해, 분류기의 입력 특정은 화소의 수에 비해 감소될 수 있다. 또한, Zernike 모멘트의 크기는 회전에 불변한 특정을 가지므로, 회전된 얼굴 영역을 검출할 수 있다. Yale 데이터베이스의 영상에 대해 적용한 결과, 회전되지 않은 영상에서는 밝기값 정보를 사용하는 기법보다 약간 낮은 성능을 보였지만, 회전된 영상에 대해서는 월등히 높은 성능을 보였다. 국부 조명에 대한 추가적인 보상과 특징이 사용된다면, 강건한 얼굴 인식을 위한 전처리 과정의 핵심 기술로 사용할 수 있을 것이다.
얼굴영상을 효율적으로 처리하기 위해선 먼저 인력영상에서 얼굴영역과 얼굴을 구성하는 각 요소를 검출하고 얼굴의 회전각을 추정하는 전처리과정이 필요하다. 본 논문에서는 다양한 얼굴의 크기와 머리회전, 조명의 변화가 허용되고 피부색과 비슷한 배경이 얼굴에 병합되는 경우에도 얼굴과 요소들(눈, 입)을 강건하게 검출할 수 있는 방법을 제안한다. 변환된 HSV 컬러 좌표계상의 대역적 피부 색상정보와 히스토그램을 이용한 피부 색상정보로 얼굴후보영역을 지정한 뒤, 같은 방법으로 얼굴후보영역 안에서 입술영역을 검출한다. 입술영역의 횡축 기울기로 x축에 대한 회전각을 추정한 후, 얼굴의 모양정보와 요소의 위치정보를 이용해 얼굴임을 확정한다. 다음으로 양안의 조합으로 이루어진 부분 템플릿매칭을 통해 눈을 검출한 뒤, 얼굴의 넓이를 참조한 3차원 공간상에서의 눈의 위치를 계산하여 y축 회전각을 추정한다. 다양한 얼굴영상에 대해 실험을 실시한 결과, 본 알고리즘의 유효성을 확인하였다.
얼굴영상을 효율적으로 처리하기 위해선 먼저 입력영상에서 얼굴영역과 얼굴을 구성하는 각 기관을 검출하는 전처리과정이 필요하다. 본 논문에서는 얼굴의 크기와 얼굴의 회전, 조영의 변화가 어느 정도 허용되고 피부색 배경이 얼굴에 병합된 경우에도 얼굴영역과 얼굴기관(눈, 입)을 강건하게 검출할 수 있는 방법으로, 입력영상에 따른 적응적 칼라 색상정보와 얼굴기관의 부분 템플릿매칭을 조합한 알고리즘을 제안한다. 변환된 HSV 칼라 좌표계상의 대역적 피부색상 정보와 히스토그램을 이용한 적응적 피부색상 정보로 얼굴영역을 검출한 뒤, 얼굴영역 안에서 입술색상 정보로 도출된 입술영역의 X축 기울기를 이용해 회전얼굴을 보정하고, 양안의 조합으로 이루어진 부분 템플릿을 이용해 눈을 검출한다.
머리전달함수(HRTF)가 정확하더라도 사람의 얼굴이 움직이게 되면 실제 머리전달함수와 미리 측정한 머리전달 함수가 달라져 입체음향 시스템의 성능이 저하되므로 정확한 얼굴의 회전각이 요구된다. 따라서 본 논문에서는 정확한 머리전달함수의 입력을 위해 사람 얼굴의 회전각을 추정하고자 한다. 제안하는 알고리즘은 먼저 Haar-like 특징을 이용하여 얼굴을 검출한 후 전처리 작업을 통해 눈의 바깥쪽 경계면과 안쪽 경계면을 검출한다. 그리고 검출된 두 개의 경계면의 비를 이용하여 얼굴의 회전각을 추정한다. 제안하는 알고리즘은 기존에 방법들에 비해 적용 범위가 넓음을 실험을 통해 알 수 있었다.
본 논문은 영상의 얼굴과 헤어영역이 가지는 기하학적 정보를 이용한 얼굴 검출 알고리즘을 제안한다. 영상에서 얼굴과 헤어영역은 기하학적으로 인접하는 특성을 가지고 있고, 이러한 특성은 정면을 향하는 얼굴뿐만 아니라 회전된 얼굴이나 옆얼굴에서도 존재한다. 따라서 이러한 특징은 얼굴 검출을 위하여 사용 될 수 있다. 제안한 알고리즘은 우선 영상에서 컬러정보를 이용하여 영상내의 피부영역과 헤어영역을 검출한다. 이렇게 검출된 피부영역의 특징을 분석하여 여러 피부영역 중 얼굴 후보영역을 찾는다. 이후 얼굴 후보영역과 헤어영역 사이의 교차영역을 생성한다. 마지막으로 검출된 여러 얼굴 후보영역 중 교차영역을 포함하고 있는 영역을 얼굴로 판단한다. 실험 결과는 정면 및 측면 얼굴 영상뿐만 아니라 기하학적으로 왜곡된 영상에서도 높은 검출률을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.