• Title/Summary/Keyword: 회전된 얼굴 검출

Search Result 56, Processing Time 0.022 seconds

Rotated Face Detection Using Polar Coordinate Transform and AdaBoost (극좌표계 변환과 AdaBoost를 이용한 회전 얼굴 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.896-902
    • /
    • 2021
  • Rotated face detection is required in many applications but still remains as a challenging task, due to the large variations of face appearances. In this paper, a polar coordinate transform that is not affected by rotation is proposed. In addition, a method for effectively detecting rotated faces using the transformed image has been proposed. The proposed polar coordinate transform maintains spatial information between facial components such as eyes, mouth, etc., since the positions of facial components are always maintained regardless of rotation angle, thereby eliminating rotation effects. Polar coordinate transformed images are trained using AdaBoost, which is used for frontal face detection, and rotated faces are detected. We validate the detected faces using LBP that trained the non-face images. Experiments on 3600 face images obtained by rotating images in the BioID database show a rotating face detection rate of 96.17%. Furthermore, we accurately detected rotated faces in images with a background containing multiple rotated faces.

Rotated Face Detection Using Symmetry Detection (대칭성 검출에 의한 회전된 얼굴검출)

  • Won, Bo-Whan;Koo, Ja-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • In many face recognition applications such as security systems, it is assumed that upright faces are given to the system. In order for the system to be used in more general environments, the system should be able to deal with the rotated faces properly. It is a generally used approach to rotate the face detection window and apply face detector repeatedly to detect a rotated face in the given image. But such an approach requires a lot of computation time. In this paper, a method of extracting the axis of symmetry for a given set of points is proposed. The axis of symmetry for the edge points in the face detection window is extracted in a way that is fast and accurate, and the face detector is applied only for that direction. It is shown that the mean and standard deviation of the symmetry detection error is $0^{\circ}$ and $3^{\circ}$ respectively, for the database used.

Rotation Invariant Face Detection Using HOG and Polar Coordinate Transform

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.85-92
    • /
    • 2021
  • In this paper, a method for effectively detecting rotated face and rotation angle regardless of the rotation angle is proposed. Rotated face detection is a challenging task, due to the large variation in facial appearance. In the proposed polar coordinate transformation, the spatial information of the facial components is maintained regardless of the rotation angle, so there is no variation in facial appearance due to rotation. Accordingly, features such as HOG, which are used for frontal face detection without rotation but have rotation-sensitive characteristics, can be effectively used in detecting rotated face. Only the training data in the frontal face is needed. The HOG feature obtained from the polar coordinate transformed images is learned using SVM and rotated faces are detected. Experiments on 3600 rotated face images show a rotation angle detection rate of 97.94%. Furthermore, the positions and rotation angles of the rotated faces are accurately detected from images with a background including multiple rotated faces.

Rotation Invariant Multiracial Face Detection (얼굴 회전에 강인한 다인종 얼굴 검출)

  • Kim, Kwang-Soo;Kim, Jin-Mo;Kwak, Soo-Yeong;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.945-952
    • /
    • 2007
  • The face detection is a necessary first-step in the face recognition systems, with the purpose of localizing and extracting face regions from input images. But it is not a simple problem, because faces have many variations such as scale, rotation and lighting condition. In this paper, we propose a novel method to detect not only frontal faces but also partial rotated faces in still images. Firstly, we produce the eye candidates in the sub-regions of an input image to detect rotated faces. Secondly, the eye candidates are used to measure the angles of rotated faces. Thirdly, we are able to derotate the rotated face then put it to Bayesian classifier. We make an experiment with rotated multiracial face and show the good results in this paper.

Inclined Face Detection using JointBoost algorithm (JointBoost 알고리즘을 이용한 기울어진 얼굴 검출)

  • Jung, Youn-Ho;Song, Young-Mo;Ko, Yun-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.606-614
    • /
    • 2012
  • Face detection using AdaBoost algorithm is one of the fastest and the most robust face detection algorithm so many improvements or extensions of this method have been proposed. However, almost all previous approaches deal with only frontal face and suffer from limited discriminant capability for inclined face because these methods apply the same features for both frontal and inclined face. Also conventional approaches for detecting inclined face which apply frontal face detecting method to inclined input image or make different detectors for each angle require heavy computational complexity and show low detection rate. In order to overcome this problem, a method for detecting inclined face using JointBoost is proposed in this paper. The computational and sample complexity is reduced by finding common features that can be shared across the classes. Simulation results show that the detection rate of the proposed method is at least 2% higher than that of the conventional AdaBoost method under the learning condition with the same iteration number. Also the proposed method not only detects the existence of a face but also gives information about the inclined direction of the detected face.

Face Detection using Zernike Moments (Zernike 모멘트를 이용한 얼굴 검출)

  • Lee, Daeho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • This paper proposes a novel method for face detection method using Zernike moments. To detect the faces in an image, local regions in multiscale sliding windows are classified into face and non-face by a neural network, and input features of the neural network consist of Zernike moments. Feature dimension is reduced as the reconstruction capability of orthogonal moment. In addition, because the magnitude of Zernike moment is invariant to rotation, a tilted human face can be detected. Even so the detection rate of the proposed method about head on face is less than experiments using intensity features, the result of our method about rotated faces is more robust. If the additional compensation and features are utilized, the proposed scheme may be best suited for the later stage of classification.

  • PDF

Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template (컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출)

  • Lee, Mi-Ae;Park, Ki-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.465-472
    • /
    • 2003
  • For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.

Dection Method of Human Face and Facial Components Using Adaptive Color Value and Partial Template Matching (적응적 칼라 정보와 부분 템플릿매칭에 의한 얼굴영역 및 기관 검출)

  • 이미애;류지헌;박기수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.262-264
    • /
    • 2003
  • 얼굴영상을 효율적으로 처리하기 위해선 먼저 입력영상에서 얼굴영역과 얼굴을 구성하는 각 기관을 검출하는 전처리과정이 필요하다. 본 논문에서는 얼굴의 크기와 얼굴의 회전, 조영의 변화가 어느 정도 허용되고 피부색 배경이 얼굴에 병합된 경우에도 얼굴영역과 얼굴기관(눈, 입)을 강건하게 검출할 수 있는 방법으로, 입력영상에 따른 적응적 칼라 색상정보와 얼굴기관의 부분 템플릿매칭을 조합한 알고리즘을 제안한다. 변환된 HSV 칼라 좌표계상의 대역적 피부색상 정보와 히스토그램을 이용한 적응적 피부색상 정보로 얼굴영역을 검출한 뒤, 얼굴영역 안에서 입술색상 정보로 도출된 입술영역의 X축 기울기를 이용해 회전얼굴을 보정하고, 양안의 조합으로 이루어진 부분 템플릿을 이용해 눈을 검출한다.

  • PDF

Improved Detection Method Face Rotation Angle for 3D Sound System (입체 음향을 위한 개선된 얼굴 방위각 검출)

  • Han, Sang-Il;Ryu, Il-Hyun;Seo, Bo-Guk;Koo, Ko-Sik;Cha, Hyung-Tai
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.201-204
    • /
    • 2008
  • 머리전달함수(HRTF)가 정확하더라도 사람의 얼굴이 움직이게 되면 실제 머리전달함수와 미리 측정한 머리전달 함수가 달라져 입체음향 시스템의 성능이 저하되므로 정확한 얼굴의 회전각이 요구된다. 따라서 본 논문에서는 정확한 머리전달함수의 입력을 위해 사람 얼굴의 회전각을 추정하고자 한다. 제안하는 알고리즘은 먼저 Haar-like 특징을 이용하여 얼굴을 검출한 후 전처리 작업을 통해 눈의 바깥쪽 경계면과 안쪽 경계면을 검출한다. 그리고 검출된 두 개의 경계면의 비를 이용하여 얼굴의 회전각을 추정한다. 제안하는 알고리즘은 기존에 방법들에 비해 적용 범위가 넓음을 실험을 통해 알 수 있었다.

  • PDF

Face Detection Using Geometrical Information of Face and Hair Region (얼굴과 헤어영역의 기하학적 정보를 이용한 얼굴 검출)

  • Lee, Woo-Ram;Hwang, Dong-Guk;Jun, Byoung-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2C
    • /
    • pp.194-199
    • /
    • 2009
  • This paper proposes a face detection algorithm that uses geometrical information on face and hair region. This information that face adjoins hair regions can be the important one for face detection. It is also kept in images with frontal, rotated and lateral face. The face candidates are founded by the analysis of skin regions after detecting the skin and hair color regions in an image. Next, the intersected lesions between face candidates and hair's are created. Finally, the face candidates that include the subsets of these regions turn out to be face. Experimental results showed the high detection rates for frontal and lateral faces as well as faces geometrically distorted.