• Title/Summary/Keyword: 회귀 모형 함수

Search Result 294, Processing Time 0.026 seconds

Test for Distribution Change of Dependent Errors (종속 오차에 대한 분포 변화 검정법)

  • Na, Seong-Ryong
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.587-594
    • /
    • 2009
  • In this paper the change point problem of the error terms in linear regression models is considered. Since fixed or stochastic independent variables and weakly dependent errors are assumed, usual multiple regression models and time series models including ARMA are covered. We use the estimates of probability density function based on residuals in order to test the distribution change of the unobserved errors. Under some mild conditions, the test using the residuals is proved to have the same limiting distribution as the test based on true errors.

Varying coefficient model with errors in variables (가변계수 측정오차 회귀모형)

  • Sohn, Insuk;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.971-980
    • /
    • 2017
  • The varying coefficient regression model has gained lots of attention since it is capable to model dynamic changes of regression coefficients in many regression problems of science. In this paper we propose a varying coefficient regression model that effectively considers the errors on both input and response variables, which utilizes the kernel method in estimating the varying coefficient which is the unknown nonlinear function of smoothing variables. We provide a generalized cross validation method for choosing the hyper-parameters which affect the performance of the proposed model. The proposed method is evaluated through numerical studies.

Log-density Ratio with Two Predictors in a Logistic Regression Model (로지스틱 회귀모형에서 이변량 정규분포에 근거한 로그-밀도비)

  • Kahng, Myung Wook;Yoon, Jae Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.141-149
    • /
    • 2013
  • We present methods for studying the log-density ratio that enables the selection of the predictors and the form to be included in the logistic regression model. Under bivariate normal distributional assumptions, we investigate the form of the log-density ratio as a function of two predictors. If two covariance matrices are equal, then the crossproduct and quadratic terms are not needed. If the variables are uncorrelated, we do not need the crossproduct terms, but we still need the linear and quadratic terms. We also explore other conditions in which the crossproduct and quadratic terms are not needed in the logistic regression model.

A study on the Estimation Function of the Operating Cost for an Urban Railway (with a focus on Medium-sized Rapid Transit) (도시철도 운영비용 추정함수개발에 관한 연구 (중간규모 도시철도를 중심으로))

  • Chung, Su Young;Lee, Won Young
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.4
    • /
    • pp.318-330
    • /
    • 2013
  • It is necessary to estimate the operating cost for constructing an urban railway system. The present study was thus carried out to develop an estimation function of the operating cost for a MRT(Medium-sized Rapid Transit) system. We selected seven independent variables that could influence the operating cost: the rolling stocks, the number of trains in operation, the length of the lines, the number of stations, the number of passengers per day, the frequency of train operation, and the number of depots. We performed a multiple regression using Excel. Three types of regression functions were thereupon developed. All of them proved to be appropriate after comparing the results of the estimated cost. It will therefore be possible to use one of these three types, depending on the assumptions of the independent variables.

Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed (기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로))

  • Huy, Nguyen Dinh;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

An Application of Response Surface Experiments to Control the Quality of Industrial Products : Model Fitting and Prediction of Responses (공업제품의 질을 관리하기 위한 반응표면 실험의 응용 - 통계적 모형 적합과 반응의 예측을 중심으로 -)

  • Park, Seong-Hyeon
    • Journal of Korean Society for Quality Management
    • /
    • v.6 no.1
    • /
    • pp.14-17
    • /
    • 1978
  • In response surface experiments, a polynomial regression model is often used to fit the response surface to explore the functional relationship between a response variable and several independent variables, and to determine the optimum operating conditions, which would be desirable to control the quality of industrial products. The problem considered in this paper is that of selecting subsets of polynomial terms from a given polynomial model so as to achieve "improved" response surfaces in estimation of the response. Such improvement in fitting the response surfaces would be very helpful to determine the optimum operating conditions and to explore the functional relationship with better precision. A criterion is proposed for selection of polynomial terms and illustrated with an industrial example.

  • PDF

Time series analysis for the amount of medicine from the Korea Consumer Agency (한국 소비자원 의료분야 처리금액에 대한 시계열 분석)

  • Hee Song Kang;Sukhui Kwon;SungDuck Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • The amount of money processed in medicine from the Korea Consumer Agency was studied by the various time series models. The medical data set from the Korea Consumer Agency were consisted of counseling, damage relief and conciliation. For the analysis of time series, autoregressive moving average model, vector autoregressive model and the transfer function model were used. We considered the stationarity and cross correlation function for the identification and fitting. As a result, the transfer function model showed a better prediction. Whereas, the vector autoregressive model also provided good information for the degree and duration of the influence of variables.

Analysis of AI interview data using unified non-crossing multiple quantile regression tree model (통합 비교차 다중 분위수회귀나무 모형을 활용한 AI 면접체계 자료 분석)

  • Kim, Jaeoh;Bang, Sungwan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.753-762
    • /
    • 2020
  • With an increasing interest in integrating artificial intelligence (AI) into interview processes, the Republic of Korea (ROK) army is trying to lead and analyze AI-powered interview platform. This study is to analyze the AI interview data using a unified non-crossing multiple quantile tree (UNQRT) model. Compared to the UNQRT, the existing models, such as quantile regression and quantile regression tree model (QRT), are inadequate for the analysis of AI interview data. Specially, the linearity assumption of the quantile regression is overly strong for the aforementioned application. While the QRT model seems to be applicable by relaxing the linearity assumption, it suffers from crossing problems among estimated quantile functions and leads to an uninterpretable model. The UNQRT circumvents the crossing problem of quantile functions by simultaneously estimating multiple quantile functions with a non-crossing constraint and is robust from extreme quantiles. Furthermore, the single tree construction from the UNQRT leads to an interpretable model compared to the QRT model. In this study, by using the UNQRT, we explored the relationship between the results of the Army AI interview system and the existing personnel data to derive meaningful results.

비모수 퍼지회귀모형

  • Choe, Seung-Hoe;Kim, Hae-Gyeong;Seong, Na-Yeong
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.199-201
    • /
    • 2003
  • 본 연구에서는 크리스프자료(crisp data)인 독립변수와 퍼지자료(fuzzy data)인 종속변수 사이의 관계가 특정한 함수로 표현되지 않는 비모수 퍼지회귀모형을 분석하기위하여 퍼지수 순위와 퍼지순위변환방법을 소개하고, 모의실험을 통하여 퍼지순위변환방법의 효율성을 조사한다.

  • PDF

On the analysis of multistate survival data using Cox's regression model (Cox 회귀모형을 이용한 다중상태의 생존자료분석에 관한 연구)

  • Sung Chil Yeo
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.2
    • /
    • pp.53-77
    • /
    • 1994
  • In a certain stochastic process, Cox's regression model is used to analyze multistate survival data. From this model, the regression parameter vectors, survival functions, and the probability of being in response function are estimated based on multistate Cox's partial likelihood and nonparametric likelihood methods. The asymptotic properties of these estimators are described informally through the counting process approach. An example is given to likelihood the results in this paper.

  • PDF