• 제목/요약/키워드: 회귀 모델 최적화

검색결과 141건 처리시간 0.039초

반도체 공정 최적화를 위한 일반화된 회귀 신경망 플라즈마 모델 (A Generalized Regression Neural Network Plasma Model for Semiconductor Process Optimization)

  • 박성진;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2744-2746
    • /
    • 2000
  • 일반화된 회귀 신경망을 이용하여 반도체 공정 최적화를 위한 플라즈마를 모델링한다. 플라즈마는 Box-W린son 실험계획표에 의해 특성화되었으며, 여기에서 변화시킨 인자로는 소스전력, 압력, 척지지대의 위치, 그리고 염소의 유량이다. 총 24회의 실험이 수행이 되었으며, 플라즈마 변수는 Langmuir Probe를 이용하여 측정하였다. 측정된 주요 플라즈마 변수로는 전자밀도, 전자온도, 그리고 플라즈마 전위이다. 폭변수를 점진적으로 증가시켜 회귀신경망을 최적화하였으며. 최적화된 모델은 통계적인 반응표면모델과 비교하였다. 비교 결과, 회귀신경망은 반응표면모델에 상응하는 예측능력을 보이고 있음을 알 수 있었다.

  • PDF

유전자 알고리즘과 일반화된 회귀신경망을 이용한 플라즈마 증착공정 예측모델 (Prediction model of plasma deposition process using genetic algorithm and generalized regression neural network)

  • 이덕우;김병환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1117-1120
    • /
    • 2004
  • 경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.

  • PDF

유전자 알고리즘과 일반화된 회귀 신경망을 이용한 박막 전하밀도 예측모델 (Modeling of Charge Density of Thin Film Charge Density by Using Neural Network and Genetic Algorithm)

  • 권상희;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1805-1806
    • /
    • 2007
  • Silicon nitride (SiN) 박막을 플라즈마 응용화학기상법을 이용하여 증착하였다. SiN박막의 전하밀도는 일반화된 회귀 신경망 (GRNN)을 이용하여 모델링하였다. PECVD 공정은 Box Wilson 실험계획표를 이용하여 수행하였다. GRNN 모델의 예측수행은 유전자 알고리즘 (GA)을 이용하여 최적화하였다. 최적화한 GA-GRNN 모델은 종래의 GRNN 모델과 비교하여, 약55%정도의 예측성능의 향상을 보였다.

  • PDF

통계적 처리를 이용한 일반화된 회귀 신경망의 분류성능의 최적화 (Optimization of Generalized Regression Neural Network Using Statistical Processing)

  • 김근호;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2749-2751
    • /
    • 2002
  • 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마을 분류하는 새로운 알고리즘을 보고한다. 데이터분포를 통계적인 평균치와 표준편차를 이용하여 특징지었으며, 바이어스 인자을 이용하여 9 종류의 데이터을 발생하였다. 각 데이터에 대하여 GRNN의 학습인자를 최적화하였으며, 모델성능은 예측과 분류 정확도로 나누어 바이어스와 학습인자의 함수로 분석하였다. 바이어스는 모델성능에 상당한 영향을 주었으며, 학습인자와의 상호작용을 통하여 완전 분류를 이루었다.

  • PDF

회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석 (Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.299-304
    • /
    • 2023
  • 인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다.

중심합성법에 의한 구조최적화에서 회귀함수변화의 영향 (Effect of Various Regression Functions on Structural Optimizations Using the Central Composite Method)

  • 박정선;전용성;임종빈
    • 한국항공우주학회지
    • /
    • 제33권1호
    • /
    • pp.26-32
    • /
    • 2005
  • 본 연구에서는 반응표면법에 다항함수, 지수함수, 로그함수등을 적용한 다양한 회귀함수를 이용하여 최적화를 수행하였다. 이를 검증하기 위해 트러스 구조와 하니콤 복합재 플랫폼에 대하여 응력 및 고유진동수를 고려하여 최적설계를 수행하였다. 근사함수를 효과적이고 용이하게 하는 방법을 실험계획법이라 하는데 중심합성법, 요인설계법, 회전계획법, 심플렉스법 등이 있으며, 본 연구에서는 중심합성법을 이용하여 반응표면을 생성하였다. 이를 위하여 구조해석 코드로 MSC/NASTRAN을 사용하였으며 최적설계 프로그램은 중심합성법을 기반으로 하여 다양한 회귀모델에 의한 반응표면을 적용하여 작성하였다. 또한 이 결과를 기존의 도함수를 이용한 최적화 기법이나 유전자알고리즘을 이용한 최적화 결과와 비교하여 반응표면법의 설계상의 장점 및 반응표면 생성 시 다양한 회귀모델에의 사용에 대한 신뢰성을 확인하였다.

신경망을 이용한 고신뢰성의 회귀분석 모델 (Regression Model With High Reliability by Using Neural Networks)

  • 조용현
    • 정보처리학회논문지B
    • /
    • 제8B권4호
    • /
    • pp.327-334
    • /
    • 2001
  • 본 논문에서는 기울기하강과 동적터널링이 조합된 학습알고리즘의 다층신경망을 이용한 고신회성의 회귀분석 모델을 제안하였다. 기울기하강은 빠른 수렴속도의 최적화가 가능하도록 하기 위함이고, 동적터널링은 국소최적해를 만났을 때 이를 벗어난 새로운 연결가중치를 설정하여 전역최적해로 수렴되도록 하기 위함이다. 또한 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 주요성분분석 기법의 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 회귀분석 모델의 제약도 동시에 해결하였다. 제안된 기법의 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 역전과 알고리즘의 신경망이나 주요성분분석에 의한 차원을 감소시키지 않은 학습패턴을 이용한 신경망보다 각각 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 또한 학습패턴의 영평균 정규화로 회귀용 신경망의 성능을 더욱 더 개선하였다.

  • PDF

2차 다항회귀 메타모델을 이용한 달착륙선 충격흡수 시스템의 순차적 근사 최적설계 (Sequential Approximate Optimization of Shock Absorption System for Lunar Lander by using Quadratic Polynomial Regression Meta-model)

  • 오민환;조영민;이희준;조진연;황도순
    • 한국항공우주학회지
    • /
    • 제39권4호
    • /
    • pp.314-320
    • /
    • 2011
  • 본 연구에서는 2단으로 구성된 달착륙선 충격 흡수 장치에 대한 최적화를 수행하였다. 충격 흡수 장치의 복잡한 충격거동을 모사하기 위해 1차원 구성방정식 모델을 제안하였으며, 이와 함께 상용해석 소프트웨어인 ABAQUS를 활용하여 최적화를 위한 2차 다항회귀 메타모델을 구성하였다. 구성된 메타모델을 순차적 근사 최적설계 기법에 적용하여 2단 충격 흡수 장치의 최적화를 수행하였으며, 이를 통해 허니컴 구조를 이용한 충격 흡수장치의 셀크기와 포일 두께를 변화시킴에 따라 달착륙선의 월면 착륙 시 충격하중을 크게 저감시킬 수 있음을 확인하였다.

레이디얼 베이시스 함수망을 이용한 플라즈마 전자밀도 균일도 모델링 (Modeling of Electron Density Non-Uniformity by Using Radial Basis Function Network)

  • 김가영;김병환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1938-1939
    • /
    • 2007
  • Radial Basis Function Network (RBFN)을 이용하여 플라즈마 전자밀도를 모델링하였다. RBFN의 예측성능은 학습인자의 함수로 최적화하였다. 체계적인 모델링을 위해 통계적인 실험계획법이 적용되었으며, 실험은 반구형 유도결합형 플라즈마 장비를 이용하여 수행이 되었다. 전자밀도측정에는 Langmuir probe가 이용되었다. 최적화된 RBFN모델을 통계적인 회귀 모델과 비교하였으며, 59%정도 모델의 예측성능을 향상시켰다.

  • PDF

레이디얼 베이시스 함수망을 이용한 플라즈마 식각공정 모델링 (Modeling of plamsa etch process using a radial basis function network)

  • 박경영;김병환;이병택
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1129-1133
    • /
    • 2004
  • 반도체공정 최적화에 소요되는 시간과 경비를 줄이기 위해 신경망 모델이 개발되고 있다. 주로 역전파 신경망을 이용하여 모델이 개발되고 있으며, 본 연구에서는 Radial Basis Function Network (RBFN)을 이용하여 플라즈마 식각공정 모델을 개발한다. 실험데이터는 유도결합형 플라즈마를 이용한 Silicon Carbide 박막의 식각공정으로부터 수집되었다. 모델개발을 위해 $2^4$ 전인자 (full factorial) 실험계획법이 적용되었으며, 모델에 이용된 식각응답은 식각률과 atomic force microscopy로 측정한 식각표면 거칠기이다. 모델검증을 위해 추가적으로 16번의 실험을 수행하였다. RBFN의 예측성능은 세 학습인자, 즉 뉴런수, width, 초기 웨이트 분포 (initial weight distribution-IWD) 크기에 의해 결정된다. 본 연구에서는 각 학습인자의 영향을 최적화하였으며, IWD의 불규칙성을 고려하여 주어진 학습인자에 대해서 100개의 모델을 발생하고, 이중 최소의 IWD를 갖는 모델을 선택하였다. 최적화한 식각률과 표면거칠기 모델의 RMSE는 각기 26 nm/min과 0.103 nm이었다. 통계적인 회귀모델과 비교하여, 식각률과 표면거칠기 모델은 각기 52%와 24%의 향상된 예측정확도를 보였다. 이로써 RBFN이 플라즈마 공정을 효과적으로 모델링 할 수 있음을 확인하였다.

  • PDF