본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.
Communications for Statistical Applications and Methods
/
제16권3호
/
pp.463-477
/
2009
극단치 분포의 모수 추정방법으로 최우추정법, 확률가중적률법, 회귀분석법은 기존 연구에서 활발하게 적용되어져 왔다. 그러나 이들 세 가지 추정방법 가운데, 회귀분석법의 우수성은 엄격하게 평가되어진 적이 없다. 본 논문에서는 몬테칼로 시뮬레이션을 통하여 Generalized Extreme Value(GEV) 분포와 Generalized Pareto(GP) 분포의 모수 추정에 회귀분석법 및 다른 추정방법을 적용하여 비교 연구한다. 시뮬레이션 결과, 표본의 크기가 작은 경우 회귀분석 법은 GEV 분포의 위치모수 추정시 편의 측면과 효율성 측면에서 다른 방법보다 우수한 경향을 나타내었다. GP 분포의 규모모수 추정시에는 표본의 크기 가 작을 경우 회귀분석법이 다른 방법보다 작은 편의를 나타내었다. 회귀분석법은 표본의 크기 가 작거나 적당히 큰 경우에도 GEV 분포나 GP 분포의 형태모수 추정시에 형태모수의 값이 -0.4일 경우, 다른 방법보다 우수한 경향을 나타내었다.
형제 쌍(sibpair)의 연속형 형질(continuous traits) 자료를 이용한 유전연관성 검정 법(linkage test)으로서 Haseman과 Elston (1972)의 최소제곱(ordinary least square, OLS) 회귀분석법이 주로 사용된다. 비모수적 방법으로서 제시된 Kruglyak과 Lander (1995)의 검정통계량은 Haseman과 Elston (1972)의 방법에 대응되는 방법처럼 보이지만 실제로는 매우 다르다. 본 논문에서는 Kruglyak와 Lander (1995)의 검정통계량과 Haseman과 Elston (1972)의 검정통계량의 관계를 설명하고 모의실험으로 두 검정통계량의 검정력을 비교한다. 유전연관성에 사용되는 형제 자료의 특징은 한정된 설명변수의 값에 매우 많은 자료가 반복(replicated)되었다는 점이며, 이러한 반복 자료에 더욱 적절한 가중 회귀분석법을 제안한다. 가중 회귀분석법의 효율성을 정규분포 또는 정규분포가 아닌 연속형 형질 모의실험 자료로 알아본 결과 형제 쌍 자료의 유전연관성 검정에서 가중 회귀분석법이 다른 검정법들보다도 검정력이 높음을 확인하였다.
본 논문에서는 회귀문제를 위한 비선형 특징 추출방법을 제안하고 분류문제에 적용한다. 이 방법은 이미 제안된 선형판별 분석법을 회귀문제에 적용한 회귀선형판별분석법(Linear Discriminant Analysis for regression:LDAr)을 비선형 문제에 대해 확장한 것이다. 본 논문에서는 이를 위해 커널함수를 이용하여 비선형 문제로 확장하였다. 기본적인 아이디어는 입력 특징 공간을 커널 함수를 이용하여 새로운 고차원의 특징 공간으로 확장을 한 후, 샘플 간의 거리가 큰 것과 작은 것의 비율을 최대화하는 것이다. 일반적으로 얼굴 인식과 같은 응용 분야에서 얼굴의 크기, 회전과 같은 것들은 회귀문제에 있어서 비선형적이며 복잡한 문제로 인식되고 있다. 본 논문에서는 회귀 문제에 대한 간단한 실험을 수행하였으며 회귀선형판별분석법(LDAr)을 이용한 결과보다 향상된 결과를 얻을 수 있었다.
본 논문은 복합표본조사 분석에서 회귀모형 접근법으로 사용되는 모형 기반 접근법, 설계 기반 접근법과 일반화 추정 방정식 접근법을 설명하고, 이들을 실증적으로 비교한 것이다. 또한 설계 기반 접근법과 일반화 추정 방정식 접근법에 대해서 설계효과와 가중치 효과 분석을 통해서 표본 설계가 모수 추정에 미치는 영향을 살펴보았다.
한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
/
pp.584-594
/
1998
선형회귀분석은 가장 널리 사용되는 데이터 분석기법이지만 독립변수와 종속변수간의 관계가 선형이라고 가정하기 때문에 문제점을 가지고 있다. 비모수 회귀분석(Nonparametric Regression)은 선형회귀분석의 문제점을 극복할 수 있는 방법으로 변수간의 관계의 형태를 미리 가정하지 않고 데이터에 의해 결정하는 방법이다. 본 연구에서는 유전자 알고리즘을 비모수 회귀분석법 중의 하나인 Regressoin Splines에 적용하였다. 인위적 데이터를 이용한 평가 결과 유전자 알고리즘은 다양한 상황에서 매우 우수한 것으로 나타났다.
우리나라에서 강우의 시간분포를 위해 보편적으로 사용되고 있는 방법은 Huff 4분위법으로 강우의 시간적 분포특성을 나타내는 무차원 시간분포곡선을 제시한 것으로, 강우의 지속기간을 4분위로 구분하여 각 분위의 강우량 중 가장 큰 값이 속해 있는 구간을 선택하여 그 구간의 위치에 따라 분위를 정하는 방법이다. 현재 실무에서는 Huff의 분위별 곡선에 대한 회귀식은 지속기간 전반에 걸쳐 정확도가 높은 이유로 6차식을 적용하고 있으나, 통계 모델링에서 간결함의 원리에 따라 회귀식이 간결할 필요가 있으며, 통계적 유의수준에 기초하여 회귀계수를 결정하여야 하므로 유의성 검정 방법을 통한 검정결과를 비교할 필요가 있다. 따라서 본 연구에서는 다중회귀분석 방법에 따른 회귀계수 유의성 검정결과 비교를 위하여 구미지역의 무차원 누가우량 백분율을 이용한 시간분포 회귀식을 이용하여 유의성 검정 방법인 분산분석 방법(Analysis of Variance)과 변수선택 방법(Backward Selection)의 검정 결과를 도출 및 비교하였다. 통계프로그램인 프로그래밍 R을 이용하여 변수선택 방법 중 후방제거법 함수를 이용하여 최종 회귀식을 도출하고 또한 7차 회귀식을 분산분석을 이용한 후방제거법으로 회귀계수를 제거하는 방법으로 최종 회귀식을 산정하였다. 분산분석을 이용한 후방제거법의 유의성 검정결과는 프로그래밍 R을 이용한 후방제거법의 결과와 동일한 것으로 분석되었다. 일반적으로 설계강우량의 시간분포를 위한 방법으로 사용되고 있는 Huff의 4분위 방법의 시간분포 회귀식은 회귀계수의 유의성 검정이 이루어지고 있지 않으므로 본 연구결과를 통해 설계강우량 시간분포 회귀식의 유의성 검정방법 제시 및 결과도출과정을 통해 시간분포 회귀식 산정기법으로 활용할 수 있을 것으로 사료된다.
현장조사를 통해 암반사면의 안정성을 평가하기 위해서 여러 연구자들에 의해 평가법이 제안되었다. 그러나 기존의 평가법들은 제안자의 주관적 판단에 의해 평가항목의 선정과 가중치가 달리 적용되고 있어 평가법에 따라 안정성 평가결과도 서로 상이하게 나타나고 있다. 따라서 각 평가항목에 대한 가중치의 객관성을 확보하기 위해 로지스틱 회귀분석을 실시하여 안정성 평가법을 제안하였다.
송이버섯 생산량과 기후인자와의 관계를 통계적으로 규명하기 위한 노력이 꾸준이 진행되어 왔다. 최근 박현 등(1998)은 송이버섯 생산량과 기후인자의 관계를 자기회귀모형을 이용하여 분석하였으나 예측력이 떨어지는 것으로 나타났다. 본 논문에서는 예측의 정확성을 높이기 위한 방법으로 송이버섯 생산이 있다는 조건을 이용한 조건부 자기 회귀모형을 제안하였다. 두 모형의 예측력을 비교한 결과 조건부 자기회귀모형이 더 우수한 것으로 나타났다.
기존의 회귀식을 사용하거나 새로 유도하여 사용하는 경우 모두 일반적으로 회귀분석의 특성을 간과하고 사용하는 경우가 종종 발생한다. 일반적으로 자료들에서 구해진 회귀식은 분명히 독립변수와 종속변수가 구분되어 유도되었음에도 불구하고 이 식을 사용함에 있어서는 간혹 그 구분을 무시하고 역으로 적용하는 경향이 있었다. 그러나, 독립$\cdot$종속변수가 서로 바뀌면, 연직거리의 잔차들로부터 유도되는 기존의 회귀분석에 의하여, 회귀식이 서로 달라지기 때문에 역으로 적용하여서는 안된다. 이를 해결하기 본 연구에서는 상호변수 최소자승 회귀분석법을 제안하였다. 이론적 내용을 검토를 위해 임진강 영평천의 영중수위표 지점의 2001-2003년의 유량측정자료와 수위-유량곡선을 비교 분석하였다. 결론적으로 상호변수 회귀분석을 사용하면, 기존의 잘못 사용해온 관행을 해소할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.