• Title/Summary/Keyword: 회귀법

Search Result 1,741, Processing Time 0.029 seconds

Effects of Areal Interpolation Methods on Environmental Equity Analysis (면내삽법이 환경적 형평성 분석에 미치는 영향)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.6
    • /
    • pp.736-751
    • /
    • 2008
  • Although a growing number of studies have commonly used a simple areal weighting interpolation method to quantify demographic characteristics of impacted areas in environmental equity analysis, the results obtained are inevitably imprecise because of the method's unrealistic assumption that population is evenly distributed within a census enumeration unit. Two alternative areal interpolation methods such as intelligent areal weighting and regression methods can account for the distributional biases in the estimation of impacted populations by making use of additional information about the geographic distribution of population. This research explores five areal interpolation methods for estimating the population characteristics of impacted areas in environmental equity analysis and evaluates the sensitivity of the outcomes of environmental equity analysis to areal interpolation methods. This study used GIS techniques to allow areal interpolation to be informed by the distribution of land cover types, as inferred from a satellite image. in both the source and target units. Independent samples t-test statistics were measured to verify the environmental equity hypothesis while coefficients of variation were calculated to compare the relative variability and consistency in the socioeconomic characteristics of populations at risk over different areal interpolation methods. Results show that the outcomes of environmental equity analysis in the study area are not sensitive to the areal interpolation methods used in estimating affected populations, but the population estimates within the impacted areas are largely variable as different areal interpolation methods are used. This implies that the use of different areal interpolation methods may to some degree alter the statistical results of environmental equity analysis.

  • PDF

The Discrepancy of Work Time according to the Measures: Self-reported Questions vs. Time-diary Method (측정방법에 따른 노동시간의 차이: 자기기입식 질문법과 시간일지법을 중심으로)

  • Ryu, Seong-Ryong
    • Korea journal of population studies
    • /
    • v.31 no.1
    • /
    • pp.99-125
    • /
    • 2008
  • This article aimed to clear that the systematic bias according to the length of work time exists between estimated work time by self-reported questions used mainly in measuring and calculating the length of work time because of strong points of easy in measuring and so on and diary work time by time-diary method used because of the strong point that can measure more accurate lifetime by recording various activities of respondents during 24 hours in the stream. As the result that analyze the data from Lifetime Use Survey in 2004, the result like the contradiction came that the tendency of overstating work time is rising according as estimated work time increases via estimated work time, whereas the tendency of understating work time is rising according as diary work time increases via diary work time. The reason that the opposite results come despite the data from the same survey is that random errors act in the opposite directions by regression to the mean. Therefore, we cannot emphasize that a man working long hours tends to exaggerate his work hours by the result via estimated work time. That is, the fact that the systematic bias by the increase of work time does not exist is confirmed, and therefore, it is also impossible to raise questions about the accuracy of the data through estimated work time by self-reported questions from the evidence of the existence of that bias.

Analysis of Girders with Web Opening (유공복부(有孔腹部)를 가진 거더의 해석(解析))

  • Yang, Chang Hyun;Chung, Won Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.75-86
    • /
    • 1985
  • A beam with web opening may reduce the cost of steel and the height of multistory steel buildings. Bower's analysis based on the theory of elasticity and Vierendeel analysis had evaluated the normal stresses around the holes, but these analyses have difficulties for practical uses because of complexity and the limitation for their application. In this study, it is shown that the finite element method, using smaller number of isoparametric elements by taking only a part of the beam which includes the hole, can diminish defects of the above two methods and it may represent more satisfactorily the distribution of the local stress concentration around the hole than the other methods which employed linear elements such as in the analysis by Samuel or Redwood. This study presents the effects of moments, shears, and eccentricities of a hole on the distribution of the normal stresses calculated by using the proposed finite element method. Consequently, it is found that the variations of shear force and hole depth give significant effects on the normal stresses around a hole, while the variations of eccentricities of the hole provide a little effect on them. The regression coefficients resulted from the multiple linear regression may be used for estimating the normal stresses around any arbitrary hole in the web of a beam, since the normal stresses guessed by this regression coefficient equation match well the results by the finite element method except the case of large eccentricity.

  • PDF

Analysis of Carbonization Behavior of Hydrochar Produced by Hydrothermal Carbonization of Lignin and Development of a Prediction Model for Carbonization Degree Using Near-Infrared Spectroscopy (열수 탄화 공정을 거친 리그닌 하이드로차(hydrochar)의 탄화 거동 분석과 근적외선 분광법을 이용한 예측 모델 개발)

  • HWANG, Un Taek;BAE, Junsoo;LEE, Taekyeong;HWANG, Sung-Yun;KIM, Jong-Chan;PARK, Jinseok;CHOI, In-Gyu;KWAK, Hyo Won;HWANG, Sung-Wook;YEO, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.213-225
    • /
    • 2021
  • In this paper, we investigated the carbonization characteristics of lignin hydrochar prepared by hydrothermal carbonization and established a model for predicting the carbonization degree using near-infrared spectroscopy and partial least squares regression. The carbon content of the hydrothermally carbonized lignin at the temperature of 200 ℃ was higher by approximately 3 wt% than that of the untreated sample, and the carbon content tended to gradually increase as the heating time increased. Hydrothermal carbonization made lignin more carbon-intensive and more homogeneous by eliminating the microparticles. The discriminant and predictive models using near-infrared spectroscopy and partial least squares regression approppriately determined whether hydrothermal carbonization has been applied and predicted the carbon content of hydrothermal carbonized lignin with high accuracy. In this study, we confirmed that we can quickly and nondestructively predict the carbonization characteristics of lignin hydrochar manufactured by hydrothermal carbonization using a partial least squares regression model combined with near-infrared spectroscopy.

Imputation for Binary or Ordered Categorical Traits Based on the Bayesian Threshold Model (베이지안 분계점 모형에 의한 순서 범주형 변수의 대체)

  • Lee Seung-Chun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.597-606
    • /
    • 2005
  • The nonresponse in sample survey causes a problem when it comes time to analyze dataset in public-use files where the user has only complete-data methods available and has limited information about the reasons for nonresponse. Recently imputation for nonresponse is becoming a standard approach for handling nonresponse and various imputation methods have been devised . However, most imputation methods concern with continuous traits while many interesting features are measured by binary or ordered categorical scales in sample survey. In this note. an imputation method for ignorable nonresponse in binary or ordered categorical traits is considered.

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun - (항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -)

  • CHO, Seung-Wan;KIM, Yong-Ku;PARK, Joo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression (다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향)

  • Seo, Eun-Kyoung;Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2012
  • Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.

Geometrical description based on forward selection & backward elimination methods for regression models (다중회귀모형에서 전진선택과 후진제거의 기하학적 표현)

  • Hong, Chong-Sun;Kim, Moung-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.901-908
    • /
    • 2010
  • A geometrical description method is proposed to represent the process of the forward selection and backward elimination methods among many variable selection methods for multiple regression models. This graphical method shows the process of the forward selection and backward elimination on the first and second quadrants, respectively, of half circle with a unit radius. At each step, the SSR is represented by the norm of vector and the extra SSR or partial determinant coefficient is represented by the angle between two vectors. Some lines are dotted when the partial F test results are statistically significant, so that statistical analysis could be explored. This geometrical description can be obtained the final regression models based on the forward selection and backward elimination methods. And the goodness-of-fit for the model could be explored.

Prediction model of plasma deposition process using genetic algorithm and generalized regression neural network (유전자 알고리즘과 일반화된 회귀신경망을 이용한 플라즈마 증착공정 예측모델)

  • Lee, Duk-Woo;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1117-1120
    • /
    • 2004
  • 경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.

  • PDF

Ultimate Resisting Capacity of RC Columns Considering P-$\Delta$ Effect (P-$\Delta$ 효과를 고려한 RC 기둥의 극한저항력 산정)

  • 곽효경;김진국;김한수
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.1
    • /
    • pp.105-116
    • /
    • 2002
  • In this paper, an analytical model to predict the resisting capacity of slender RC columns is introduced. Material and geometric nonlinearities are taken into account, and the layer approach is adopted to simulate the different material properties across the sectional depth. On the basis of the obtained numerical analysis results, an improved design equation as a function of concrete strength, slenderness ratio, steel ratio and eccentricity for slender RC columns, which can be used effectively in the preliminary design stage, is introduced. Finally, P-M interaction diagrams constructed by the introduced equation are compared with the ACI method with the objective of establishing the relative efficiencies of the introduced equation.