• Title/Summary/Keyword: 회귀계수

Search Result 1,933, Processing Time 0.03 seconds

혼합모형의 구간추정을 위한 PROC MIXED의 활용

  • Park, Dong-Jun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.1-6
    • /
    • 2005
  • SAS의 PROC MIXED는 ANOVA 추정량보다 더 다양한 잔차최대우도추정법 또는 최대우도추정법으로 모수들을 추론할 수 있다. 혼합모형에 속하는 불균형중첩오차구조를 갖는 선형회귀모형에서 랜덤효과에 해당되는 그룹간의 분산과 고정효과에 해당되는 회귀계수들에 대한 신뢰구간을 구하기 위하여 대표본인 경우와 소표본인 경우에 대하여 PROC MIXED를 사용한다. 시뮬레이션을 실행한 결과, 대표본인 경우에는 모수들의 신뢰구간을 구하기 위하여 PROC MIXED를 활용할 수 있지만, 소표본인 경우에는 PROC MIXED를 사용할 경우, 그룹간 분산과 회귀계수 가운데 하나인 절편항에 대한 신뢰구간은 시뮬레이터된 신뢰계수가 명시한 신뢰계수를 지키지 못하는 것을 보인다.

  • PDF

Estimation of Hydrometeorologic Parameters using Dynamic Multiple Linear Regression Model (동적 다중선형회귀 모형을 이용한 한반도 수문기상인자 산정)

  • Cho, Hyungon;Kim, Baek-Jo;Lim, Yoon-Jin;Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.286-286
    • /
    • 2016
  • 기후변화를 고려한 위한 미래 수자원 계획은 신뢰성 있는 수문기상인자의 산정을 통한 수자원 영향 평가 결과로 수립되는 것이 중요하다. 본 연구에서는 DHSVM모형과 TOPLATS모형에서 생산된 결과를 가지고 제약조건을 가지는 다중선형회귀 모형을 통하여 2012년-2014년 동안의 한반도 유역에 대한 수문기상인자를 산정하였다(Fig. 1). 다중선형회귀 모형은 하나의 종속변수의 변화를 설명하기 위하여 두 개 이상의 독립변수를 사용하는 모형으로 일반적으로 다중선형회귀 모형의 회귀 계수는 음의 값을 가질 수 있으므로 본 연구의 적용을 위하여 검정지점에 대하여 산정된 음의 회귀계수 값이 그대로 적용될 경우 적합하지 않으므로 회귀 계수에 제약조건을 부여하였다. 제한된 회귀 계수의 범위는 0-1사이를 가진다. 동적 다중선형 모형의 구성은 광릉 GCK, GDK 지점자료를 활용하였다.

  • PDF

Estimation for random coefficient autoregressive model (확률계수 자기회귀 모형의 추정)

  • Kim, Ju Sung;Lee, Sung Duck;Jo, Na Rae;Ham, In Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.257-266
    • /
    • 2016
  • Random Coefficient Autoregressive models (RCA) have attracted increased interest due to the wide range of applications in biology, economics, meteorology and finance. We consider an RCA as an appropriate model for non-linear properties and better than an AR model for linear properties. We study the methods of RCA parameter estimation. Especially we proposed the special case that an random coefficient ${\phi}(t)$ has the initial value ${\phi}(0)$ in the RCA model. In practical study, we estimated the parameters and compared Prediction Error Sum of Squares (PRESS) criterion between AR and RCA using Korean Mumps data.

Regression Analysis on Physical Status of Korean Middle and High School Boys (중.고등학생(中.高等學生)의 체격(體格)에 관(關)한 회귀분석(回歸分析))

  • Song, Dal-Hyo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.2
    • /
    • pp.299-304
    • /
    • 1974
  • The physical status (standing height, body weight, chest girth, sitting height, length of leg, length of thigh, thigh girth, length of crus, length of arm, brachial length, antebrachial girth and skinfold thickness) of 360 healthy middle and high school boys aged between 12 and 17 years in Taegu area was measured and evaluated by means of dispersion. For regression equation and coefficient ofidetermination of each status against standing height were computed. The growth progress of physical status had a tendency to be exponential and, generally, between 13 and 14 years of age the fastest progress was observed. The regression coefficient of body weight against standing height (0.90) was largest and that of skinfold thickness against standing height (0.09) was smallest. In general, the dimension of the regression coefficient was accordant with the dimension of respective physical status. Except in length of thigh and skinfold thickness, coefficient of determination of each physical status against standing height was almost 1 and the regression line could express the relation between standing height and each physical status very satisfactorily. But the regression curve was more desirable for the elucidation of the relation between standing height and skinfold thickness.

  • PDF

A Study on the Estimation of Standard Deviation of Least Absolute Deviation Estimators of Regression Coefficients (회귀계수의 최소절대편차추정량의 표준편차 추정법)

  • 이기훈;정성석
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.463-473
    • /
    • 2001
  • 선형모형의 회귀계수의 L$_1$-추정량의 점근분포는 오차항의 중앙값에 종속되어있는데, 이 값은 잔차의 순서통계량의 함수로 추정될 수 있다. 본 논문에서는 오차항 중앙값의 추정량을 유도하는 몇 가지 방법을 소개하고 몬테칼로 실험을 통하여 가장 바람직한 추정량의 형태를 제안하였다. 또한 제안한 추정량을 이용하면 검정문제에서도 좋은 결과를 얻을 수 있음을 보였다.

  • PDF

Joint penalization of components and predictors in mixture of regressions (혼합회귀모형에서 콤포넌트 및 설명변수에 대한 벌점함수의 적용)

  • Park, Chongsun;Mo, Eun Bi
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.199-211
    • /
    • 2019
  • This paper is concerned with issues in the finite mixture of regression modeling as well as the simultaneous selection of the number of mixing components and relevant predictors. We propose a penalized likelihood method for both mixture components and regression coefficients that enable the simultaneous identification of significant variables and the determination of important mixture components in mixture of regression models. To avoid over-fitting and bias problems, we applied smoothly clipped absolute deviation (SCAD) penalties on the logarithm of component probabilities suggested by Huang et al. (Statistical Sinica, 27, 147-169, 2013) as well as several well-known penalty functions for coefficients in regression models. Simulation studies reveal that our method is satisfactory with well-known penalties such as SCAD, MCP, and adaptive lasso.

Simple principal component analysis using Lasso (라소를 이용한 간편한 주성분분석)

  • Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.533-541
    • /
    • 2013
  • In this study, a simple principal component analysis using Lasso is proposed. This method consists of two steps. The first step is to compute principal components by the principal component analysis. The second step is to regress each principal component on the original data matrix by Lasso regression method. Each of new principal components is computed as the linear combination of original data matrix using the scaled estimated Lasso regression coefficient as the coefficients of the combination. This method leads to easily interpretable principal components with more 0 coefficients by the properties of Lasso regression models. This is because the estimator of the regression of each principal component on the original data matrix is the corresponding eigenvector. This method is applied to real and simulated data sets with the help of an R package for Lasso regression and its usefulness is demonstrated.

Varying coefficient model with errors in variables (가변계수 측정오차 회귀모형)

  • Sohn, Insuk;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.5
    • /
    • pp.971-980
    • /
    • 2017
  • The varying coefficient regression model has gained lots of attention since it is capable to model dynamic changes of regression coefficients in many regression problems of science. In this paper we propose a varying coefficient regression model that effectively considers the errors on both input and response variables, which utilizes the kernel method in estimating the varying coefficient which is the unknown nonlinear function of smoothing variables. We provide a generalized cross validation method for choosing the hyper-parameters which affect the performance of the proposed model. The proposed method is evaluated through numerical studies.

Suppression for Logistic Regression Model (로지스틱 회귀모형에서의 SUPPRESSION)

  • Hong C. S.;Kim H. I.;Ham J. H.
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.701-712
    • /
    • 2005
  • The suppression for logistic regression models has been debated no longer than that for linear regression models since, among many other reasons, sum of squares for regression (SSR) or coefficient of determination ($R^2$) could be defined into various ways. Based on four kinds of $R^2$'s: two kinds are most preferred, and the other two are proposed by Liao & McGee (2003), four kinds of SSR's are derived so that the suppression for logistic models is explained. Many data fitted to logistic models are generated by Monte Carlo method. We explore when suppression happens, and compare with that for linear regression models.

Unified Approach to Coefficient of Determination $R^2$ Using Likelihood Distancd (우도거리에 의한 결정계수 $R^2$에의한 통합적 접근)

  • 허명회;이종한;정진환
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.2
    • /
    • pp.117-127
    • /
    • 1991
  • Coefficient of determination $R^2$ is most frequently used descriptive measure in practical use of linear regression analysis. But there have been controversies on defining this measure in the cases of linear regression without the intercept, weighted linear regression and robust linear regression. Several authors such as Kvalseth(1985) and Willet and Singer(1988) proposed many variations of $R^2$ to meet the situations. However, theire measures are not satisfactory due to the lack of a universal principle. In this study, we propose a unfied approach to defining the coefficient of determination $R^2$ using the concept of likelihood distance. This new measure is in good accordance with typical $R^2$ in linear regression and, moreover, can be applied to nonlinear regression models and generalized linear models such as logit and log-linear models.

  • PDF