• Title/Summary/Keyword: 황색산화철

Search Result 26, Processing Time 0.022 seconds

Solid Propellants for Propulsion System Including a Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Won, Jongung;Park, Jungho;Park, Euiyong;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.65-71
    • /
    • 2018
  • There is no significant difference in the initial viscosity of a propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material with added yellow iron oxide is faster than that with the addition of red iron oxide. Specifically, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure with yellow iron oxide than with red iron oxide. The initial viscosity was lowest at 71% of the large particle to small particle ratio.

Solid Propellants for Propulsion System Including A Yellow Iron Oxide (황색산화철을 포함하는 혼합형 추진제의 특성에 관한 연구)

  • Park, Sungjun;Choi, Sunghan;Won, Jongung;Park, Jungho;Park, Euiyong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.498-503
    • /
    • 2017
  • There is no unusual difference in the initial viscosity of the propellant applied with yellow iron oxide and red iron oxide. In addition, the thermal decomposition rate of the material added with yellow iron oxide is faster than that of the addition of red iron oxide. Especially, it was confirmed that the pressure exponent was 18% lower at high temperature and high pressure. The initial viscosity was lowest at 71% of large particle/small particle ratio

  • PDF

Composite Solid Propellants for Propulsion System Including a Yellow Iron Oxide (2) (황색산화철을 포함하는 혼합형 고체추진제의 특성에 관한 연구 (2))

  • Park, Sungjun;Kim, Kyungmin;Park, Jungho;Rho, Taeho;Choi, Sunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.12-17
    • /
    • 2020
  • The mechanical properties of the propellant with yellow iron oxide were slightly increased compared to the propellant with red iron oxide. The propellant with yellow iron oxide used two types of AP. As the ratio of small particles of AP increased, the burning rate increased. The propellant may be applied to the propellant under operating conditions of 17.5 mm/sec or less having a pressure index of 0.5. The burning rate downs in the mixer scale-up. The stress at maximum load of propellant decreased and the strain at maximum load increased in the mixer scale-up. The yellow iron oxide did not affect the adhesive force between the insulation/liner/propellant.

Effect of FeOOH on Burn Rate for AP Propellant (AP계 추진제에서 황색산화철의 연소촉매 효과)

  • Yim, Yoo-Jin;Kim, Jun-Hyung;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.390-393
    • /
    • 2010
  • The thermal decomposition rate of ammonium perchlorate with 3% of yellow iron oxide, FeOOH was found to be much faster than with red iron oxide, $Fe_2O_3$. By applying yellow and red iron oxide as a burning rate modifier to HTPB/AP propellant, burning rate of the HTPB/AP propellant with yellow iron oxide was shown to be 10 ~ 25% faster than with red iron oxide. There was no special difference in viscosity and hardness buildup of yellow and red oxide added HTPB/AP formulations.

  • PDF

The Study of Development Color-Mud For Diversifying Program of Boryeong Mud Festival (보령머드축제의 머드체험 다양화를 위한 유색머드의 개발)

  • Shim, Seung-Bo;Chun, Yong-Jin
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.368-370
    • /
    • 2008
  • 대한민국 대표 축제로 자리 잡은 보령머드축제의 핵심 프로그램인 머드 셀프마사지 행사의 재미와 다양성을 부여하기 위하여, 색상이 함유된 머드에 관한 연구를 수행하였다. 머드 고유의 낮은 명도를 조절하고자 이산화티탄을 첨가하여 머드의 질감을 유지하면서 색상이 발현되는 이산화티탄의 함량을 실험하고, 결정된 혼합비율에 황색산화철을 첨가하여 색상의 발현도를 색차계, 육안검사, 사용감 등으로 판단하였다. 결정된 색상은 물에 젖음 시 발색정도와 세척상태를 검토하여 보령머드 축제 프로그램인 머드 셀프마사지 행사에 사용하여 축제의 다양성을 높이고 또한 한국의 고유색인 오방색을 나타낼 수 있는 유색머드를 개발하고자 하였다.

  • PDF

A study on the Properties of Solid Propellant Containing FeOOH Combustion Catalyst: Effect of FeOOH Calcination Temperature (연소촉매 FeOOH를 포함하는 고체추진제 특성 연구: FeOOH의 소성온도 영향)

  • Jeon, Su-A;Park, Sung-Jun;Kim, Woon-Jae;Park, Jung-ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.10-15
    • /
    • 2020
  • This study is about the changes in mechanical and combustion properties after the production of the combustion catalysts FeOOH and Fe2O3 having the same manufacturing method and application to the solid propellant. In order to make the FeOOH and Fe2O3 having the same manufacturing method, FeOOH was calcined at 200, 300, 400, 500℃ for 2 h, and the XRD results were confirmed. In addition, after applying the prepared catalyst to a solid propellant, it exhibited change in mechanical and combustion properties. As result of XRD, FeOOH was confirmed to change the crystal phase from Geothtie to Hematite between 200 and 300℃. The stress of the propellant hardly changed as the calcination temperature of the combustion catalyst incredsed, but the elongation increased when catalyst was calcined. the maximum value at 300℃. The burning rate confirmed that FeOOH without calcination was about 3~5% faster than other catalysts.

Applied Mineralogy for the Conservation of Dinosaur Tracks in the Goseong Interchange Area (35번 고속도로 고성 교차로 지역 공룡발자국의 보존을 위한 응용광물학적 연구)

  • Jeong Gi Young;Kim Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.189-199
    • /
    • 2004
  • Cretaceous sedimentary rocks bearing dinosaur tracks in the Goseong interchange area were studied for their conservation and public display in the aspect of applied mineralogy. Black clay layers alternate with silt layers in the sedimentary rocks. The verical and horizontal fissures are commonly filled with calcite veinlets, supergenetic iron and manganese oxides. The rocks are composed of quartz, albite, K-feldspar, calcite, chlorite, illite, muscovite, and biotite, with minor apatite and rutile. Silt layers are relatively rich in calcite and albite, whereas clay layers are abundant in quartz, illite, and chlorite. Al, Fe, Mg, K, Ti, and P are enriched in the clay layers, while Ca, Na, and Mn in silt. Most of trace elements including V, Cr, Co, Ni, Cs, Zr, REE, Th, and U are enriched in clay layers. Inorganic carbon are present in silt layers as calcite, while organic carbon in black clay layers. The black clay layers were partly altered to yellow clay layers along the fissures, simultaneously with the decrease of organic carbon. Selective exfoliation of clay-rich black and yellow clay layers, calcite matrix of silt layers and calcite infillings of fissures are estimated as the major weakness potentially promoting chemical and physical degradation of the track-bearing rock specimens.

An Experimental Study on the Flowability and Compressive Strength of Color Concrete Mixed with Pigments (안료를 첨가한 칼라콘크리트의 유동성 및 강도에 대한 실험적 연구)

  • Choi, Jae Jin;Hwang, Eui Hwan;Moon, Dae Joong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.547-553
    • /
    • 2006
  • To know the effect of pigments on the material properties of color concrete, mortar and concrete tests were carried out by the using 5 kinds of pigment. The major component of red, yellow and black pigments was iron oxide and coloring component of blue and green pigments was copper phthalocyanine. Properties of mortar and concrete were some of difference according to adding ratio and kind of pigments. In case of using red, yellow and black pigments, setting time of concrete speeded a little and compressive strength was tendency to increase and slump or air content of concrete was same or decreased. On the other hand, in case of using green and blue pigments, compressive strength of concrete decreased largely because of the excessive air entrainment of surfactant and sump or air content of concrete increased highly. When the antifoaming agent was added to the color concrete mixed with green and blue pigments, compressive strength of concrete was improved and similar to that of concrete without pigment.

Heavy Metal Contamination and the Roles of Retention Pond and Hydrologic Mixing for Removal of Heavy Metals in Mine Drainage, Kwangyang Au-Ag Mine Area (광양 폐 금-은 광산 지역 광산폐수의 중금속 오염과 중금속의 제거에 있어 소택지와 지류 혼합의 역할 평가)

  • 정헌복;윤성택;김순오;소칠섭;정명채
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.29-50
    • /
    • 2003
  • Physicochemical Properties of acid mine water of the Chonam-ri Creek and the Sagok-ri Creek in the Kwangyang Au-Ag mine area were determined using geochemical approaches. Metal contamination (Cd, Cu, Pb, Zn) is more serious in the Chonam-ri Creek than in the Sagok-ri Creek. However, the contents of Al and Fe is higher in the Sagok-ri Creek. Such differences between the two creeks probably reflect the abundance and composition of ore minerals. The attenuation processes for acid mine water in both creeks were investigated. In the Chonam-ri Creek, a small retention pond which contains limestone plays an important role in the removal of heavy metals by adsorption or coprecipitation due to increase of pH. The capacity of metal scavenging in this pond depends on the seasonal variation of inflow volume. Reddish yellow precipitates sampled in the Chonam-ri Creek were analyzed by XRD, SEM-EDS, EPMA, and chemical decomposition. The precipitates mainly consist of goethite and are also enriched in Al, Mn, Cu and Zn. This inditates that precipitation of goethite is important for scavenging those trace elements, possibly due to adsorption or coprecipitation. In the Sagok-ri Creek, on the other hand, hydrologic mixing of uncontaminated tributaries results in removal of heavy metals with iron hydroxides precipitation due to the pH increase. The mechanisms proposed for metal attenuation at the confluence between contaminated mine water and uncontaminated tributary water are also explained by the property-property plots.

Study on Color Formation of Cheolhwa Buncheong Stoneware Glaze by Pigment Raw Materials of Iron Oxides and Firing Conditions (철산화물 안료 원료와 번조조건에 따른 철화분청사기의 유약 발색 연구)

  • Kim, Ji Hye;Han, Min Su;Jeong, Young Yu;Choi, Sung Jae
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.573-587
    • /
    • 2019
  • In this study, reproducing specimens were made from mixing domestically produced magnetite, clay and non-plastic raw materials to reproduce the pigments used in the manufacture of traditional cheolhwa buncheong stoneware. In order to reveal the color fomation of glaze, 30 specimens with good color development were analyzed scientifically. Magnetite, which is the main raw material of the pigment, is a pigment capable of creating a dark black color in a reducing environment at 1,200℃. However, it reacts with the additionally added lime component and discolors to greenish yellow color in oxidizing environment at 1,230℃. Hematite is not significantly affected by the firing temperature and environment, but develops a dark black color when mixed with clay with iron content of more than 10%. The fluidity of the pigment is determined by R2O3/RO2 value, which also affects the color development. In the microtexture observation, the color formation of the glaze layer and the iron oxide crystals identified some differences depending on the particle size of the pigment and the firing environment. Reproduced specimens made of magnetite are present in the form of aggregates of iron oxide in the interface between glaze layer and slip layer in the oxidizing environment at 1,200℃. However, in the reducing environment, aggregates of iron oxides do not exist in the reproduced specimens, and they are homogeneously distributed in the glaze layer and formed a dark black color. In contrast, hematite-based specimens form dendritic structures in the glaze layer in an oxidizing environment and develop black.