• Title/Summary/Keyword: 황산칼슘

Search Result 110, Processing Time 0.025 seconds

Extraction of Lithium from Lepidolite through Intensive Grinding with Calcium Sulfate Hemihydrate Followed by Water Leaching (고강도 혼합분쇄 처리에 의한 인운모로부터 리튬의 수 침출 특성)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • The concentrate of lepidolite, being treated by heavy medium separation (HMS), was ground with calcium sulphate hemihydrate (CSH, $CaSO_4{\cdot}1/2H_2O$) to investigate the mechanochemical effect for the Li leachability in water. This leachability increased, dramatically through the intensive grinding for the mixture, concentrate and CSH. The leachability of Li was improved from 4.48% to 93.5%. The grinding of the mixture destructed the crystal structure of the concentrate, and it might be formed to new compounds. As the result, Li in the concentrate can be extracted by water leaching at room temperature.

An Experimental Study on the Ion Reaction and the Electrochemical Rebar-Corrosion in Aqueous Solution Mixed with Sulfate and Chloride Ion-Reactive Material (황산, 염소이온 반응 소재 혼입 수용액에서의 이온반응성 및 전기화학적 철근 부식에 관한 실험적 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kang, Tae-Won;Lim, Chang-Gil;Kim, Hong-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • In this study, amine derivatives and ion exchange resins were selected to actively control penetration ions ($SO{_4}^{2-}$, $Cl^-$) as the element technology of repair materials for concrete structures in drainage environments. Ions ($SO{_4}^{2-}$, $Cl^-$) adsorption performance and corrosion resistance of calcium hydroxide solution with amine derivative and ion exchange resin were confirmed by ion chromatography and potentiostat analysis. As a result of the experiment, it was confirmed that the amine derivative is excellent in the adsorption of chlorine ion and the ion exchange resin is excellent in the adsorption of sulfate ion. It has been confirmed that corrosion resistance can be increased by proper combination of two materials in the calcium hydroxide solution containing sulfate ion and chloride ion simulating sewage environment.

Development of Autoclave Aerated Concrete Using Circulating Fluidized Bed Combustion Ash (순환유동층 보일러애쉬를 활용한 경량기포 콘크리트 개발)

  • Lee, Chang Joon;Song, Jeong-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.58-65
    • /
    • 2021
  • In this study, as a method to increase the recycling of circulating fluidized bed combustion ash(CFBCA), CFBCA was utilized to produce autoclave aerated concrete product since CFBCA contains quicklime and calcium sulfate components that are required for the manufacture of autoclave aerated concrete. Successful achievement of such objective will bring cost reduction with high value addition, saving of natural resources, and the reduction of environmental load. Various mixing designs were designed to evaluate the properties of autoclave aerated concrete made of CFBCA. Based on series of experimental program, prototypes mix design for factory manufacturing was obtained. According to the experimental results, it was confirmed that gypsum can be replaced with CFBCA through the method of pre-treating the CFBCA as a slurry. It was possible to produce competitive autoclave aerated concrete products using CFBCA.

A Study on Prevention of Fouling Formation by Reduction Reaction of CaSO4 in a Biomass Circulating Fluidized Bed Combustion (바이오매스 순환유동층 연소에서 CaSO4 환원반응에 의한 파울링 발생 방지 연구)

  • Seong-Ju Kim;Sung-Jin Park;Sung-Ho Jo;Se-Hwa Hong;Yong-Il Mun;Tae-Young Mun
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A large amount of carbon monoxide (CO) is generated in circulating fluidized bed combustion, the process whereby a hot cyclone separates unburned fuel. However, calcium sulfate (CaSO4), when combined with a high CO content, can cause fouling on the surface of the steam tube installed inside the integrated recycle heat exchangers (INTREX). In this study, CaSO4 decomposition was investigated using 0.2-3.2 vol.% CO and 1-3 vol.% oxygen (O2) at 850℃ for 20 min in a lab-scale fluidized bed reactor. The results show that CaSO4 decomposes into CaS and CaO when CO gas is supplied, and SO2 emissions increase from 135 ppm to 1021 ppm with increasing CO concentration. However, the O2 supply delayed SO2 emissions because the reaction between CO and O2 is faster than that of CaSO4; nevertheless, when supplied with CaCO3, the intermediate product, SO2 was significantly released, regardless of the CO and O2 supply. In addition, agglomerated solids and yellow sulfur power were observed after solid recovery, and the reactor distributor was corroded. Consequently, a sufficient O2 supply is important and can prevent fouling formation on the INTREX surface by suppressing CaSO4 degradation.

Effect of Acid Rain on Marble Cultural Properties (대리석 문화재에 대한 산성비의 영향)

  • Kim, Sa Dug;Hwang, Jin Ju;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 1998
  • The influence of acid rain on the marble cultural properties investigated in two ways : 1) marble samples similar to that of Wongak-sa 10-story pagoda were directly exposed to rain in air at Chongro and Kwanghwamun sites; 2) marble samples under a protective facility were indirectly exposed to rain. The quantity of corrosion products and variations of calcium ion to rain were analyzed. The result shows that the corrosion qantity of the marble samples exposed directly under 1~8 mm rainfall in the Chongno and Kwanghwamun sites were similar, but those were 7.7 times higher than those indoor. Concentration of anions were higher than that of cations among the ion concentration over 40% in the early 1 mm rainfall. Calcium ion was produced over 30%. Because the monuments of marble, limestone and sandstone were affected by acid rain, it may be necessary to establish policies for the conservation on the National Treasures made of these materials.

  • PDF

Leaching of Molybdenite by Hydrochloric Acid Solution Containing Sodium Chlorate (NaClO3를 함유한 염산용액으로 몰리브데나이트광의 침출)

  • Nguyen, Thi Nhan Hau;Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.26-33
    • /
    • 2022
  • Molybdenum is widely used in many materials; thus, its recovery from ores and secondary resources has attracted considerable attention. In this study, the leaching of molybdenite ore using hydrochloric acid containing sodium chlorate as an oxidizing agent was studied. The effects of several variables, such as the concentrations of HCl and NaClO3, reaction temperature and time, and pulp density, on the leaching of the ore were investigated. Under strong acidic and oxidizing conditions, the sulfide in the ore was dissolved as a sulfate ion, which formed gypsum with Ca(II), leading to a decrease in the leaching percentage of Mo(VI) from the ore. The leaching percentage of molybdenum was greater than 90%, while those of iron, calcium, and silicon were 38, 29, and 67%, respectively, under the optimum conditions: 2.0 M HCl, 0.5 M NaClO3, pulp density of 5 g/L, temperature of 90 ℃, and treatment time of 60 min.

The Hardness Water Production By RO/NF/ED Linking Process From Deep Seawater (RO/NF/ED 연계 공정에 의한 고경도 담수 제조)

  • Moon, Deok-Soo;Kim, Kwang Soo;Gi, Ho;Choi, Mi Yeon;Jung, Hyun Ji;Kim, Hyun Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.227-238
    • /
    • 2013
  • The purpose of this study is to develop a process technology to produce high hardness drinking water which meet drinking water standard, remaining useful minerals like magnesium and calcium in the seawater desalination process while removing the sulfate ions and chloride ions. Seawater have been separated the concentrated seawater and desalted seawater by passing on Reverse Osmosis membrane (RO). Using Nano-filtration membrane (NF), We were prepared primary mineral concentrated water that sodium chloride were not removed. By the operation of electro-dialysis (ED) having ion exchange membrane, we were prepared concentrated mineral water (Mineral enriched desalted water) which the sodium chloride is removed. We have produced the high hardness water to meet the drinking water quality standards by diluting the mineral enriched desalted water with deionized water by RO. Reverse osmosis membranes (RO) can separate dissolved material and freshwater from seawater (deep seawater). The desalination water throughout the second reverse osmosis membrane was completely removed dissolved substances, which dissolved components was removed more than 99.9%, its the hardness concentration was 1 mg/L or less and its chloride concentration was 2.3 mg/L. Since the nano-filtration membrane pore size is $10^{-9}$ m, 50% of magnesium ions and calcium ions can not pass through the nano-filtration membrane, while more than 95% of sodium ions and chloride ions can pass through NF membrane. Nano-filtration membrane could be separated salt components like sodium ion and chloride ions and hardness ingredients like magnesium ions and calcium ions, but their separation was not perfect. Electric dialysis membrane system can be separated single charged ions (like sodium and chloride ions) and double charged ions (like magnesium and calcium ions) depending on its electrical conductivity. Above electrical conductivity 20mS/cm, hardness components (like magnesium and calcium ions) did not removed, on the other hand salt ingredients like sodium and chloride ions was removed continuously. Thus, we were able to concentrate hardness components (like magnesium and calcium ions) using nano-filtration membrane, also could be separated salts ingredients from the hardness concentration water using electrical dialysis membrane system. Finally, we were able to produce a highly concentrated mineral water removed chloride ions, which hardness concentration was 12,600 mg/L and chloride concentration was 2,446 mg/L. By diluting 10 times these high mineral water with secondary RO (Reverse Osmosis) desalination water, we could produce high mineral water suitable for drinking water standards, which chloride concentration was 244 mg/L at the same time hardness concentration 1,260 mg/L. Using the linked process with reverse osmosis (RO)/nano filteration (NF)/electric dialysis (ED), it could be concentrated hardness components like magnesium ions and calcium ions while at the same time removing salt ingredients like chloride ions and sodium ion without heating seawater. Thus, using only membrane as RO, NF and ED without heating seawater, it was possible to produce drinking water containing high hardness suitable for drinking water standard while reducing the energy required to evaporation.

Deterioration of granite in Bunhwangsaseoktap (Stone pagoda of Bunhwnagsa Temple) (분황사석탑 구성 화강암의 훼손현상)

  • Do, Jinyoung
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.73-82
    • /
    • 2005
  • The Bunhwangsaseoktop is the oldest stone brick pagoda in Silla Period. The pagoda body is made by piling small brick-shaped stones trimmed from black andesite and the first-story core has a shrine, which is made by granite. In 1915 it was repaired on a large scale, but now is severely damaged. Many kind of the stone decay like flaking, granular disintegration have occurred especially on the granite surface of the pagoda. In this study have been investigated the stone decay type and its cause in relation to efflorescence on the body part. Various analysis show that the deterioration on the granite is due to the same materials that lead to efflorescence on the body stone surface. The soluble salt like sodium nitrate, calcium sulfate and sodium sulfate come from white joint mortar. This salt solution is recrystallized in the outside of the pagoda, but most of them flow down with rain. In This process the porous granite absorbes the dissolved salts with moisture into the inside by capillary action. In order to reduce this problem, therefore, white joint moral is changed with other less soluble materials. And it is necessary to take steps to prevent water from seep into the inside of the stone, because this water dissolves the white joint mortar.

  • PDF

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Effect of Extraction Times with Bones from Hanwoo Bull on Physico-Chemical, Sensory and Nutritional Characteristics of Water Extract (한우수소뼈의 추출횟수가 용출액의 이화학적 관응적 및 영양적 특성에 미치는 영향)

  • 김진형;조수현;유영모;채현석;박범영;이종문;안종남;김학균;김용곤
    • Food Science of Animal Resources
    • /
    • v.20 no.3
    • /
    • pp.236-241
    • /
    • 2000
  • 본 연구는 한우우소뼈로 만든 용출액의 품질에 대한 과학적인 자료를 제시하고 한우뼈의 부가가치 향상 및 소비 확대를 위하여 추출횟수별에 따른 이화학적, 관능적 및 영양적 특성을 규명하였다. 탁도, 점도 및 콘드리이친황산함량에서 추출횟수가 증가할수록 유의적으로 감소한 반면(P<0.05), 콜라겐 함량에서는 추출회수가 증가할수록 유의적으로 증가하였다(P<0.05). 색도에서 명도는 추출회수가 증가할수록 유의적으로 감소한 반면, 적색도와황색도는 증가하였다(P<0.05) 관능평가에서 추출 회수가 증가할수록 평가가 유의적으로 낮았고 (P<0.05), 총질소, 나트륨, 칼슘 함량 및 칼로리는 추출회수가 증가할수록 2차추출까지 증가하다가 이후 유의적으로 감소하였다. (P<0.05)조직특성에서 추출전 대퇴골의 단면은 골수가 많이 분포하고 있으나 추출회수가 증가할수록 골수가 추출되어 3차 추출이후의 대퇴골 단면에는 골수 성분이 거의 나타나지 않았다. 이상의결과를 종합하여 볼 때 한우우소뼈로 설렁탕을 가정에서 제조시 3차까지 우려내는 것이 적당한 것으로 사료된다.

  • PDF