• Title/Summary/Keyword: 환자피폭선량

Search Result 446, Processing Time 0.026 seconds

Study on the Change of Absorbed Dose and Image Quality according to X-ray Condition of Detector in Digital Radiography(DR) (Digital Radiography(DR)에서 검출기의 X선 조건에 따른 흡수선량 및 영상화질 변화에 관한 연구)

  • Hwang, Jun-Ho;Jeong, Jae-Ho;Kim, Hyun-Soo;Lee, Kyung-Bae
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.99-106
    • /
    • 2017
  • This study focused on the issue that when a diagnostic detector is found to have a defect, a patient would be exposed to radiation and image quality would be degraded. Though dose analysis, an experiment was conducted to evaluate detector performance as Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR). Absorbed dose, SNR and CNR were measured using a dosimeter and a tissue equivalent phantom. The experiment was conducted to compare whether the dose value shown after being attached to the back side of the phantom matches the dose value attached behind the detector, where in the conditions of skull, chest and abdomen were set at 75 kVp, 25 mAs, 110 kVp, 8 mAs, and 80 kVp, 20 mAs, respectively. As a result, there was a difference in that the dose values attached to the back side of the detector were 0.004 mGy, 0.006 mGy, 0.003 mGy, whereas those of the back side of the phantom were 0.006 mGy, 0.016 mGy, 0.017 mGy. In order to match both values, the condition was increased and SNR and CNR also increased from 88.32, 88.10, 4.09, 1.63, 87.94, 79.97 to 93.87, 93.75, 4.91, 4.03, 92.02, 84.92. Though this study, we found that when a detector is found to have a aging, it shortens the life of equipment and increases the dose of a patient, also the improvement effect of image quality is inadequate.

Quality Assessment for Elbow CT scan by positioning and respiratory control (팔꿈치관절 CT검사에서 환자 자세 및 호흡에 따른 화질평가)

  • Lim, Jong-Chun;Park, Sang-Hyun;Lee, In-Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.110-114
    • /
    • 2017
  • Because the arm can't be sutured due to fracture during a elbow CT scan, a CT scan is proceeded in a state of abdomen and L-spire are overlapped which beam hardening artifact is done many times, and it often lowers the quality of elbow CT images. So there are many difficulties in reading and due to increase in radiation dose from it, the number of patient's exposure keeps increasing. In this research, it plans to improve the quality of the images by avoiding overlap with abdomen, and increasing the number of photon overlapped with lung field which the line attenuation is relatively small. The way of experiment is based on patient's right elbow and place him as head first position, then place his elbow at L2-3 level in supine position, turn about 30 degrees to the left in non-control breathing and in supine position, and compared with full inspiration after overlapping with lung. After figuring out the average value and standard deviation data using Image J program 5 times each for 16, 128 channels, the evaluation is proceeded by measuring each of CNR, MSR are statistically analyzed using SPSS program. Therefore, through positioning and inspiration during elbow CT scan, the way of inspection minimized the exposure radiation dose, and seems to be meaningful in a way to improve the quality of the images.

Evaluation of Patient Radiation Doses Using DAP Meter in Interventional Radiology Procedures (인터벤션 시술 시 면적선량계를 이용한 환자 방사선 선량 평가)

  • Kang, Byung-Sam;Yoon, Yong-Su
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • The author investigated interventional radiology patient doses in several other countries, assessed accuracy of DAP meters embedded in intervention equipments in domestic country, conducted measurement of patient doses for 13 major interventional procedures with use of Dose Area Product(DAP) meters from 23 hospitals in Korea, and referred to 8,415 cases of domestic data related to interventional procedures by radiation exposure after evaluation the actual effectives of dose reduction variables through phantom test. Finally, dose reference level for major interventional procedures was suggested. In this study, guidelines for patient doses were $237.7Gy{\cdot}cm^2$ in TACE, $17.3Gy{\cdot}cm^2$ in AVF, $114.1Gy{\cdot}cm^2$ in LE PTA & STENT, $188.5Gy{\cdot}cm^2$ in TFCA, $383.5Gy{\cdot}cm^2$ in Aneurysm Coil, $64.6Gy{\cdot}cm^2$ in PTBD, $64.6Gy{\cdot}cm^2$ in Biliary Stent, $22.4Gy{\cdot}cm^2$ in PCN, $4.3Gy{\cdot}cm^2$ in Hickman, $2.8Gy{\cdot}cm^2$ in Chemo-port, $4.4Gy{\cdot}cm^2$ in Perm-Cather, $17.1Gy{\cdot}cm^2$ in PCD, and $357.9Gy{\cdot}cm^2$ in Vis, EMB. Dose referenece level acquired in this study is considered to be able to use as minimal guidelines for reducing patient dose in the interventional radiology procedures. For the changes and advances of materials and development of equipments and procedures in the interventional radiology procedures, further studies and monitorings are needed on dose reference level Korean DAP dose conversion factor for the domestic procedures.

The Study on the Reduction of Patient Surface Dose Through the use of Copper Filter in a Digital Chest Radiography (디지털 흉부 촬영에서 구리필터사용에 따른 환자 표면선량 감소효과에 관한 연구)

  • Shin, Soo-In;Kim, Chong-Yeal;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.223-228
    • /
    • 2008
  • The most critical point in the medical use of radiation is to minimize the patient's entrance dose while maintaining the diagnostic function. Low-energy photons (long wave X-ray) among diagnostic X-rays are unnecessary because they are mostly absorbed and contribute the increase of patient's entrance dose. The most effective method to eliminate the low-energy photons is to use the filtering plate. The experiments were performed by observing the image quality. The skin entrance dose was 0.3 mmCu (copper) filter. A total of 80 images were prepared as two sets of 40 cuts. In the first set (of 40 cuts), 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of signal + noise image set. In the second set of 40 cuts, 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of non-signal image (noisy image) with random location of diameter 4 mm and 3 mm thickness of acryl disc for ROC signal at the chest phantom. P(S/s) and P(S/n) were calculated and the ROC curve was described in terms of sensitivity and specificity. Accuracy were evaluated after reading by five radiologists. The number of optically observable lesions was counted through ANSI chest phantom and contrast-detail phantom by recommendation of AAPM when non-filter or Cu filter was used, and the skin entrance dose was also measured for both conditions. As the result of the study, when the Cu filter was applied, favorable outcomes were observed on, the ROC Curve was located on the upper left area, sensitivity, accuracy and the number of CD phantom lesions were reasonable. Furthermore, if skin entrance dose was reduced, the use of additional filtration may be required to be considered in many other cases.

  • PDF

Analysis of the Relationships Between ESD and DAP, and Image SNR·CNR According to the Frame Change of Cine Imaging in CAG : With Focus on 10 f/s and 15 f/s (심장혈관 조영술에서 씨네(cine)촬영의 프레임변화에 따른 ESD와 DAP 및 영상의 SNR·CNR 관계 분석: 10f/s과 15f/s을 중심으로)

  • Jung, Myo-Young;Seo, Young-Hyun;Song, Jong-Nam;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.669-675
    • /
    • 2018
  • This study aimed to investigate the difference of X-ray exposure by comparing and analyzing entrance surface dose and absorbed dose according to the frame change in coronary angiography using an X-ray machine. Moreover, appropriate frame selection measures for examination, including the effect of frame change on the image quality, were sought by measuring and analyzing the SNR and CNR of the image through image J. The study was conducted on 30 patients (19 males and 11 females) who underwent CAG at this hospital from June 2017 to October 2017. In regard to the patients, their age range was 49-82 years (mean of $65{\pm}9$ years), body weight was 45-91 kg (mean of $67{\pm}8.9kg$), height was 150-179cm (mean of $165.1{\pm}8.9kg$), and BMI was 19.5-30.5(mean of $24.5{\pm}2.9$). For the entrance surface dose and absorbed dose, air kerma value and DAP were obtained and analyzed retrospectively. The SNR and CNR were measured and analyzed through imageJ, and the result values were derived by applying the values to the formula. As for the statistical analyses, the correlations between the entrance surface dose and absorbed dose, and between the SNR and CNR were analyzed by using the SPSS statistical program. The relationship between the entrance surface dose and absorbed dose was not statistically significant for both 10 f/s and 15 f/s (p>0.05). In terms of the relationship between the SNR and CNR, the SNR ($3.374{\pm}2.1297$) and CNR ($0.234{\pm}0.2249$) in 10 f/s were $1.43{\pm}0.4861$ and $0.132{\pm}0.0555$ lower, respectively, than the SNR ($4.929{\pm}2.8532$) and CNR ($0.391{\pm}0.3025$) in 15 f/s, which were not statistically significant (p>0.05). In the correlation analysis, statistically significant results were obtained among the BMI, air kerma, and DAP; between air kerma and DAP; and between SNR and CNR (p<0.001, p<0.001). In conclusion, there was no significant difference between the entrance surface dose and absorbed dose even when the images were taken by changing the frame from 10 f/s to 15 f/s at the time of the coronary angiography. SNR and CNR increased at 15 f/s than at 10 f/s, but they were not statistically significant. Therefore, this study suggests that the concern of the patient and practitioner regarding image quality degradation, as well as the problem of X-ray exposure caused by imaging at 10 f/s and 15 f/s, may be reduced.

Study on Image Quality and Radiation Dose due to the Arm Position in the Abdomen/Pelvis CT (복부/골반 CT 검사 시 팔의 위치에 따른 방사선 선량과 영상화질 비교 연구)

  • Lee, Jongwoong;Won, Doyeon;Jung, Jaeeun;Kim, Hyeongyun
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.337-342
    • /
    • 2015
  • The one-year-follow-up test of abdomen/pelvis from 10 patients who were scanned more than twice a years were analyzed the radiation dose and image quality depend on the position of the arm retrospectively from January to December in 2013. There were classified two groups, group A was examined with raising an arm on standard position and group B was performed with lowering an arm, respectively. Group A of an average mAs from the first dose amount was shown 11.4% less compared to Group B. And the value of CTDI from Group B also was investigated 11.3% less. To compare the quality comparison of the second image as histogram value, the value of max from both of two groups was measured similarly. However, a big difference was shown from the value of min and SD, the short dose was appeared depends on the position of arm even though Group A was radiated more than Group B. Less exposure to the medical image quality only by working CT scan when the examiner actively raise the arm before the development and testing of high-end equipment introduction of complex algorithms for obtaining an optimized image will be provided to the patient.

Enhancement of Image Quality Using Detector Filter (검출기 필터를 이용한 화질의 향상)

  • Lim, Jong-Nam;Kim, Hyung-Tae;Kim, Min-Hye;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.6
    • /
    • pp.451-456
    • /
    • 2016
  • Radiation dose to patient is unavoidable when diagnosis is carried out using X-ray. Radiation diagnosis using dual energy X-ray was examined to verify the possibility of medical applications by SNR and image scoring. The dual energy X-ray was realized by combining together two image plates and filter of 0.5 mm thick Cu or Al. Under one X-ray exposure, contrast enhanced image was obtained using two images of image plates. The enhanced image showed higher SNR and image score compared to the first image which was the image recorded with the first image plate. The dual energy X-ray technique would be a very useful method for obtaining higher SNR image and for realizing very low dose, and could be applied to medical applications.

Preliminary Study on Electron Paramagnetic Resonance(EPR) Signal Properties of Mobile Phone Components for Dose Estimation in Radiation Accident (방사선사고시 피폭선량평가를 위한 휴대전화 부품의 전자상자성공명(EPR) 특성에 대한 예비 연구)

  • Park, Byeong Ryong;Ha, Wi-Ho;Park, Sunhoo;Lee, Jin Kyeong;Lee, Seung-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.194-201
    • /
    • 2015
  • We have investigated the EPR signal properties in 12 components of two mobile phones (LCD, OLED) using electron paramagnetic resonance (EPR) spectrometer in this study.EPR measurements were performed at normal atmospheric conditions using Bruker EXEXSYS-II E500 spectrometer with X-band bridge, and samples were irradiated by $^{137}Cs$ gamma-ray source. To identify the presence of radiation-induced signal (RIS), the EPR spectra of each sample were measured unirradiated and irradiated at 50 Gy. Then, dose-response curve and signal intensity variating by time after irradiation were measured. As a result, the signal intensity increased after irradiation in all samples except the USIM plastic and IC chip. Among the samples, cover glass(CG), lens, light guide plate(LGP) and diffusion sheet have shown fine linearity ($R^2$ > 0.99). Especially, the LGP had ideal characteristics for dosimetry because there were no signal in 0 Gy and high rate of increase in RIS. However, this sample showed weakness in fading. Signal intensity of LGP and Diffusion Sheet decreased by 50% within 72 hours after irradiation, while signals of Cover Glass and Lens were stably preserved during the short period of time. In order to apply rapidly EPR dosimetry using mobile phone components in large-scale radiation accidents, further studies on signal differences for same components of the different mobile phone, fading, pretreatment of samples and processing of background signal are needed. However, it will be possible to do dosimetry by dose-additive method or comparative method using unirradiated same product in small-scale accident.

The evaluation of contralateral breast's dose and shielding efficiency by breast size about breast implant patient for radiation therapy (인공 유방 확대술을 받은 환자의 유방암 치료 시 크기에 따른 반대 측 유방의 피폭 선량 및 차폐 효율 평가)

  • Kim, Jong Wook;Woo, Heon;Jeong, Hyeon Hak;Kim, Kyeong Ah;Kim, Chan Yong;Yoo, Suk Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.329-336
    • /
    • 2014
  • Purpose : To evaluate the dose on a contralateral breast and the usefulness of shielding according to the distance between the contralateral breast and the side of the beam by breast size when patients who got breast implant receive radiation therapy. Materials and Methods : We equipped 200 cc, 300 cc, 400 cc, and 500 cc breast model on the human phantom (Rando-phantom), acquired CT images (philips 16channel, Netherlands) and established the radiation treatment plan, 180 cGy per day on the left breast (EclipseTM ver10.0.42, Varian Medical Systems, USA) by size. We set up each points, A, B, C, and D on the right(contralateral) breast model for measurement by size and by the distance from the beam and attached MOSFET at each points. The 6 MV, 10 MV and 15 MV X-ray were irradiated to the left(target) breast model and we measured exposure dose of contralateral breast model using MOSFET. Also, at the same condition, we acquired the dose value after shielding using only Pb 2 mm and bolus 3 mm under the Pb 2 mm together. Results : As the breast model is bigger from 200 cc to 500 cc, The surface of the contralateral breast is closer to the beam. As a result, from 200 cc to 500 cc, on 180 cGy basis, the measurement value of the scattered ray inclined by 3.22 ~ 4.17% at A point, 4.06 ~ 6.22% at B point, 0.4~0.5% at C point, and was under 0.4% at D point. As the X-ray energy is higher, from 6 MV to 15 MV, on 180 cGy basis, the measurement value of the scattered ray inclined by 4.06~5% at A point, 2.85~4.94% at B point, 0.74~1.65% at C point, and was under 0.4% at D point. As using Pb 2 mm for shield, scattered ray declined by average 9.74% at A and B point, 2.8% at C point, and is under 1% at D point. As using Pb 2 mm and bolus together for shield, scattered ray declined by average 9.76% at A and B point, 2.2% at C point, and is under 1% at D point. Conclusion : Commonly, in case of patients who got breast implant, there is a distance difference by breast size between the contralateral breast and the side of beam. As the distance is closer to the beam, the scattered ray inclined. At the same size of the breast, as the X-ray energy is higher, the exposure dose by scattered ray tends to incline. As a result, as low as possible energy wihtin the plan dose is good for reducing the exposure dose.

Nationwise Survey of the X-ray Beam Collimator Utilization in General Diagnostic Radiograph (진단방사선 일반촬영에서의 X-ray Beam Collimator 사용 전국 실태조사)

  • Kim, Jee Hye;Sung, Dong-Wook;Kim, Jeong Wook;Shin, Jin Ho;Lee, Soon Keun;Jung, Kyung Il;Uhm, Jong Kwan;Lee, Ki Nam;Seong, Ho Jin;Kim, Youn Hyun;Kim, Hyeog Ju
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2013
  • Due to the introduction of CR and DR, it has been neglected the use of the X-ray beam collimator and field size. This study examines nationwide survey of the proper use of collimator and field size by area in a specific field of plain radiography and the current status. Authors emphasized the need for the field size criteria, and propose a standard reference field size in each specific radiologic examination. Total 333 medical institutions (included in Seoul, Gyeonggi-do, Jeolla, Chungcheong, Gangwon-do, Busan area), were investigated in relation to the status of the X-ray beam collimation field size, type specific inspection areas, medical facilities, and image analyses by type to figure out whether they use the adjustment of image field to the specific examination. To assess the awareness and the impact of radiation exposure to the collimation adjustable, 168 radiographers who was working in 10 general hospitals, 10 hospitals, and 10 clinics, were surveyed how they haver adjusted the actual field size. We examine that 61.3% of medical institutions used the "Proper collimation" and only 49.9% of them employed proper one in lumbar spine densely crowded by major organs. 69% among general hospitals, and 65% among hospitals using DR system were using proper collimation. Radiographers recognized that proper adjustment of collimation could reduce the harmful radiation dose on patients. In the survey, 97.6% of respondents were aware of this fact, but only 83.3% of respondents did the adjustment of the size of the collimation field. The using of proper collimation field was low in the nationwide survey, so the effort to reduce the radiation dose on the patients is urgently needed. A unified standard for the field accompanied by thorough education should be needed.