• Title/Summary/Keyword: 환원전위

Search Result 374, Processing Time 0.03 seconds

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Vermicomposting of Leather Waste Sludge by Earthworm, Lumbricus rubellus (I) (지렁이를 이용(利用)한 피혁(皮革) 슬러지의 퇴비화(堆肥化)에 관(關)한 연구(硏究)(I))

  • Son, Hee-Jeong;Kim, Hyeong-Seok;Song, Young-Chae;Sung, Nak-Chang;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 1996
  • The study on the ripening of leather waste sludge was performed to vemistabilize the sludge effectively using a laboratory scale darkened wood box reactor ($10{\times}10{\times}20cm$). The acceptable feed conditions for earthworm of Eh, alkalinity were obtained in the 30th and 35th days, respectively. The value of pH was gradually decreased from 7.8 to 7.1 through the ripening time. The contents of heavy metals of the ripened sludge were estimated as lower levels compared to the other regulatory standards for compost. After the ripening time for 50days, the physico-chemical properties of the sludge were estimated as pH 7.1, water content 72%, redox potential 85mV, electrolytic conductivity $2,620{\mu}mhos/cm$ and alkalinity 450 ppm as $CaCO_3$, respectively. In the ripened sludge, survival rate of the earthworms for 50 days was about 75%, and the live weight increase rate was about 230% at the temperature range of $20{\sim}25^{\circ}C$. Moreover, hatching rate of the earthworm cocoons was about 87% and the highest value was obtained in the 20~30th days. From the above results, it was evaluated that leather waste sludge could be vermistabilized effectively by earthworms, when the sludge was ripened during 50 days.

  • PDF

Geochemical Characteristics and Nitrates Contamination of Shallow Groundwater in the Ogcheon Area (옥천지역 천부지하수의 지구화학적 특성 및 질산염 오염 특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.43-52
    • /
    • 2010
  • The geochemical and nitrogen isotopic analyses for shallow groundwater of Ogcheon area were carried out to characterize the geochemical characteristics of the groundwater and to identify the source of nitrate. Groundwater shows a neutral pH to weakly alkalic condition with pH values ranging from 6.9 to 8.4. The average of EC, Eh and DO is $344.2\;{\mu}s/cm$, 195 mV, 4 mg/L, respectively. According to piper diagram, chemical composition of groundwater is dominantly characterized by Ca-$HCO_3$ type. On the other hand, groundwater type in the study area include Ca-Cl+$NO_3$ type that were highly influenced by agricultural activities. $NO_3$-N concentration of the collected samples(n=45) range from 12.4 to 34.2 mg/l. These data show that the $NO_3$-N concentration exceeds Korea Drinking Water Standard (10 mg/l). The $\delta^{15}N-NO_3$ values range from $2.7^{\circ}/_{\circ\circ}$ to $18.8^{\circ}/_{\circ\circ}$. The enrichments of heavy isotope in the groundwater indicate that major origin of nitrate pollution were associated with animal and human waste. Also the denitrification may have partly contributed as one of the sources of nitrogen.

Influence of Dissolved Gases on Crystal Structure of Electrodeposition Films Containing Calcium and Magnesium in Seawater (해수 중 칼슘 및 마그네슘을 포함한 전착 코팅막의 결정구조에 미치는 용해 기체의 영향)

  • Park, Jun-Mu;Seo, Beom-Deok;Lee, Seul-Gi;Kim, Gyeong-Pil;Gang, Jun;Mun, Gyeong-Man;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.116-116
    • /
    • 2018
  • 부식은 재료와 사용 환경과의 상호작용에 의한 결과로서 일반적으로 두께의 감소와 균열의 발생 및 파손 등의 문제로 나타난다. 특히 사용환경 중에서 해수 분위기는 금속의 부식에 가장 유리한 조건이다. 따라서 해양환경 중 항만이나 조선 및 해양 산업 등에 많이 이용되는 강 구조물은 이에 대응하기 위하여 도장방식이나 음극방식을 사용하고 있다. 여기서 음극방식은 피방식체를 일정전위로 음극 분극하는 원리로써 외부전원을 인가하거나 비전위의 금속을 전기적으로 연결하여 방식하는 방법이다[1]. 한편, 해수 중에서 이와 같은 원리로 음극방식 할 경우에는 피방식체인 강재표면에 부분적으로 칼슘 또는 마그네슘 화합물 등의 생성물이 부착하는 현상을 볼 수 있게 된다. 이와 같이 수산화마그네슘($Mg(OH)_2$)및 탄산칼슘($CaCO_3$)을 주성분으로 하여 석출되는 석회질 피막(calcareous deposits)은 피방식체에 유입되는 음극방식 전류밀도를 감소시켜 주거나 물리적 장벽의 역할을 함으로써 외부의 산소와 물 등 부식환경으로부터 소지금속을 보호한다[2]. 그러나 석회질 피막은 소지금속과의 결합력, 막의 균일한 분포, 내식성 및 제작시간의 단축 등 해결해야 할 과제가 있다. 또한 여러 가지 환경 조건 등의 영향을 받아 그 피막의 형성 정도도 가늠하기 어렵기 때문에 음극방식 설계 시 그 정도에 따른 영향을 고려-반영하기가 곤란하다. 따라서 본 연구에서는 석출속도, 밀착성 및 내식특성을 향상시키기 위해 전착프로세스를 통해 해수 중 기체를 용해시켜 석회질 피막을 제작하고 막의 결정구조 제어 및 특성을 분석-평가하였다. 본 연구에 사용된 강 기판(Steel Substrate)은 일반구조용강(KS D 3503, SS400)을 사용하였으며, 외부전원은 정류기(Rectifier, xantrex, XDL 35-5T)를 사용하여 3 및 $5A/m^2$의 조건으로 인가하였다. 양극의 경우에는 해수에 녹아있는 이온 이외에 다른 성분들이 환원되는 것을 방지하기 위해 불용성 양극인 탄소봉(Carbon Rod)을 사용하였다. 이때 석출속도, 밀착성 및 내식특성 향상을 위해 해수에 주입한 기체의 양은 0.5 NL/min였으며, 기판 근처에 고정하여 음극 부근에서의 반응을 유도하였다. 각 조건별로 제작된 막의 표면 모폴로지, 조성원소 및 결정구조 분석을 실시하였으며, 석회질 피막의 밀착성과 내식특성을 평가하기 위해 규격에 따른 테이핑 테스트(Taping Test, ISO 2409)와 3 % NaCl 용액에서 전기화학적 양극 분극 시험을 진행하여 제작된 막의 내구성과 내식성을 분석-평가하였다. 시간에 따른 전착막의 외관관찰 결과 전류밀도의 증가와 함께 상대적으로 많은 피막이 형성되었고, 용해시킨 기체에 의해 더 치밀하고 두터운 피막이 형성됨을 확인할 수 있었다. 성분 및 결정구조 분석 결과 $Mg(OH)_2$ 성분의 Brucite 및 $CaCO_3$ 성분의 Calcite 및 Aragonite 구조를 확인하였으며, 용해시킨 기체의 영향으로 $CaCO_3$ 성분의 Aragonite 구조가 상대적으로 많이 검출되었다. 밀착성 및 내식성 평가를 실시한 결과 해수 중 용해시킨 기체에 의해 제작한 시편의 경우 견고하고 화학적 친화력이 높은 Aragonite 결정이 표면을 치밀하게 덮어 전해질로부터 산소와 물의 침입을 차단하는 역할을 하여 기체를 용해시키지 않은 3 및 $5A/m^2$ 보다 비교적 우수한 밀착성 및 내식 특성을 보이는 것으로 사료된다.

  • PDF

Preparations of SPE Electrocatalysts Modified with Polypyrrole and Its Application for PEMFC (폴리피롤로 개질된 SPE 전극촉매의 제조 및 PEMFC로의 응용)

  • Kim, Jung-Hoon;Oh, Seung-Duck;Kim, Han-Sung;Park, Jong-Ho;Han, Jung-Woo;Lee, Kang Taek;Joe, Yung-Il
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.118-124
    • /
    • 2005
  • In this study, a novel deposition method of Pt catalysts onto Nafion membranes modified with polypyrrole (PPy) has been proposed for PEMFC application. The PPy/Nafion composite membranes were fabricated by chemical polymerization of pyrrole using $FeCl_3$ and $Na_2S_2O_8$ as initiator. The proton conductivity and water uptake of the chemically prepared PPy/Nafion composites were investigated. The ionic conductivity and water uptake of PPy/Nafion composite membrane prepared with $Na_2S_2O_8$ were decreased with polymerization time of pyrrole. In the case of $FeCl_3$, the ionic conductivity was almost retained and the water uptake was decreased with polymerization time of pyrrole. When the Pt particle was deposited on PPy/Nafion composites membrane by chemical reduction of $H_2PtCl_6$, the Pt loading on Nafion membrane was enhanced by polypyrrole due to electronic conduction property. The performance evaluation with membrane electrode assembly composed of Pt/PPy/Nafion composite and diffusion electrode was carried out using a single cell. As a result of fuel cell test, current density of $569mA/cm^2$ at 0.3 V has been obtained for MEA contained with Pt/PPy/Nafion composite. This study shows that direct deposition of Pt catalysts on Nafion impregnated polypyrrole is a promising method to prepare thin catalyst layer for the PEMFC.

Surface Sterilization Effect of Electrolyzed Acid-water on Vegetable (전해 산화수의 채소류 표면 살균 효과)

  • Jung, Sung-Won;Park, Kee-Jai;Park, Kyung-Jo;Park, Byoung-In;Kim, Young-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1045-1051
    • /
    • 1996
  • The influence of electrolyzed acid-water (oxidation-reduction potential (ORP): above 1,150 mV, pH : 2.5) on the survival of some microorganisms was investigated. It was observed that the ORP of electrolyzed acid-water was kept at the level of above 1,000 mV for 15 days at room temperature. Escherichia coli. Salmonella typhi, Staphylococcus aureus and Saccharomyces cerevisiae were not detected after 10 to 40 min in electrolyzed acid-water. However, Bacillus cereus showed higher tolerance to electrolyzed acid-water than other test microorganisms. After 60 min of inoculation, only 0.4% of initial population remained. The investigation of surface sterilization effect on some vegetables was carried out too. Total count of cabbage, Chinese cabbage and kale were reduced to below 3% of initial count, and no coliform was detected after 20 to 60 min of immersion in 5 volumes of electrolyzed acid-water. In the lettuce, total and coliform counts were reduced to 90% and 2% of initial population. This study shows that the electrolyzed acid-water has a potential for the sterilization of food products such as vegetables and fruits which cannot be thermally sterilized.

  • PDF

The Solubility of Ozone in Deionized Water and its Cleaning Efficiency (초순수내에서의 오존의 용해도와 세정효과)

  • Han, Jeoung-Hoon;Park, Jin-Goo;Kwak, Young-Shin
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.532-537
    • /
    • 1998
  • The purpose of this study was to investigate the behavior of ozone in DI water and the reaction with wafers during the semiconductor wet cleaning process. The solubility of ozone in DI water was not only dependent on the temperature but also directly proportional to the input concentration of ozone. The lower the initial ozone concentration and the temperature, the longer the half-life time of ozone. The reaction order of ozone in DI water was calculated to be around 1.5. The redox potential reached a saturation value in 5min and slightly increased as the input ozone concentrations increased. The completely hydrophilic surface was created in Imin when HF etched silicon wafer was cleaned in ozonized DI water containing higher ozone concentrations than 2ppm. Spectroscopic ellipsometry measurements showed that the chemical oxide formed by ozonized DI water was measured to be thicker than that by piranha solution. The wafers contaminated with a non-ionic surfactant were more effectively cleaned in ozonized DI water than in piranha and ozonized piranha solutions.

  • PDF

Computational Analysis for a Molten-salt Electrowinner with Liquid Cadmium Cathode (액체 카드뮴 음극을 사용한 용융염 전해제련로 전산해석)

  • Kim, Kwang-Rag;Jung, Young-Joo;Paek, Seung-Woo;Kim, Ji-Yong;Kwon, Sang-Woon;Yoon, Dal-Seong;Kim, Si-Hyung;Shim, Jun-Bo;Kim, Jung-Gug;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • In the present work, an electrowinning process in the LiCl-KCl/Cd system is considered to model and analyze the electrotransport of the actinide and rare-earth elements. A simple dynamic modeling of this process was performed by taking into account the material balances and diffusion-controlled electrochemical reactions in a diffusion boundary layer at an electrode interface between the molten salt electrolyte and liquid cadmium cathode. The proposed modeling approach was based on the half-cell reduction reactions of metal chloride occurring on the cathode. This model demonstrated a capability for the prediction of the concentration behaviors, a faradic current of each element and an electrochemical potential as function of the time up to the corresponding electrotransport satisfying a given applied current based on a galvanostatic electrolysis. The results of selected case studies including five elements (U, Pu, Am, La, Nd) system are shown, and a preliminary simulation is carried out to show how the model can be used to understand the electrochemical characteristics and provide better information for developing an advanced electrowinner.

A Study on the Stability of Langmuir-Blodgett(LB) Films of L-${\alpha}$-Phosphatidylethanolamine Monolayer (L-${\alpha}$-Phosphatidylethanolamine 단분자층 LB막의 안정성에 관한 연구)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2014
  • We were investigated by cyclic voltammetry to the stability through the electrochemical characteristics of phospholipid(L-${\alpha}$-phosphatidylethanolamine, LAPE) monolayer LB films. LAPE monolayer LB films was deposited by the LB method on the indium tin oxide(ITO) glass. The electrochemical properties was measured by cyclic voltammetry with a three-electrode system in 0.5 N, 1.0 N, 1.5 N and 2.0 N $KClO_4$ solution. The measuring range is continuously oxidized to 1650 mV, with an initial potential of -1350 mV was reduced. Scanning rates of 50, 100, 150, 200, and 250 mV/s was set. As a result, LB monolayer films of LAPE was appeared on irreversible processes by the oxidation current from the cyclic voltammogram. Diffusion coefficient (D) of LAPE was calculated 195, 15.9, 5.75, 1.38 and $0.754cm^2s^{-1}{\times}10^{-9}$ at 0.01 N, 0.05 N, 0.10 N, 0.15 N and 0.20 N $KClO_4$ solutions, respectively.

Electrodeposition of Cu(InxGa(1-x))Se2 Thin Film (CIGS 박막의 전착에 관한 연구)

  • Lee, Sang-Min;Kim, Young-Ho;Oh, Mi-Kyung;Hong, Suk-In;Ko, Hang-Ju;Lee, Chi-Woo
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • The chalcopyrite $Cu(In_xGa_{(1-x)})Se_2$ (CIGS) is considered to be one of the effective light-absorbing materials for thin film photovoltaic solar cells. We describe the electrodeposition of CIGS thin films in ambient laboratory conditions, and suggest the electrochemical conditions to prepare stoichiometric CIGS thin films of Ga/(In + Ga) = 0.3. In acidic solutions containing $Cu^{2+}$, $In^{3+}$, $Ga^{3+}$ and $Se^{4+}$ ions, the CIGS films of different Cu/In/Ga/Se chemical compositions were electrodeposited onto Mo/Glass substrate. The structure, morphology and chemical composition of electrodeposited CIGS films were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDS), respectively.