• Title/Summary/Keyword: 환원적 분해반응

Search Result 200, Processing Time 0.023 seconds

Fractionation of the Cells of Staphylococcus aureus (Staphylococcus aureus의 균체분획(菌體分劃))

  • Choi, Kyoung-Ho;Hyun, Eun-Min;Park, Kum-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.10 no.1
    • /
    • pp.85-91
    • /
    • 1981
  • The growing cells of S. aureus were fractionated along the Schmidt-Thannhauser-Schneider's technique into several fractions such as TCA(trichloroacetic acid)-soluble, lipid, nucleic acid, protein and residue fraction. They were also fractionated according to their cellular structure into Sonic-supernatant, SDS(sodium lauryl sulfate)-soluble, Formamide-soluble and Residue fraction. Fractionation was carried out by orderly treatment of the Sonic pellet with 1.0% SDS and hot$(150^{\circ}C)$ formamide, and the pellet was prepared by centrifugation of the cells sonic osillated for 20 minutes at 150 watt. Sonic-supernatant fraction contained a 91.3% of total DNA while other fractions contained less than 9.5%. SDS-soluble fraction showed a high activity of malate dehydrogenase(13.67 unit/mg protein) and which was higher 22.3 times than the activity found from unsoluble fraction. Formamide-soluble fraction prepared from SDS-undoluble pellet by using the hot formamide exhibited a clear action of reducing sugars against the Anthronesulfate, while it exhibited no clear action against the ninhydrin. However, contrastly, the residue remainnning after extraction with formamide exhibited a clear action against ninhydrin and glucosamine was detected form the hydrolysate of residue by paper chromatography. From these results it is considered that the Sonic-supernatant fraction is mainly consisted of plasmic component of the cells. Other fractions, SDS-soluble, Formamide-soluble and Residue, should be consisted of plasma membrane, lipoplysaccharide and peptidoglycan of the cell, respectively.

  • PDF

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

$\beta$-Mercaptoethanol이 돼지 체외수정란의 생산에 미치는 영향

  • 한만희;구덕본;이경광;박창식;서길웅;정영채;이규승
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.81-81
    • /
    • 2002
  • $\beta$-Mercaptoethanol($\beta$-ME)은 일반적으로 황화합물(thiol compounds)의 일종으로, 배양액 중에서 이황화결합(disulfide bonds)을 분해하여 일정한 물질의 산화.환원반응에 관여하며, 특히 cysteine이 cystine으로 산화되는 것을 차단함으로서 cysteine의 이용능력을 증대시키고, GSH의 합성을 촉진 및 증대시키는 것으로 알려져 있고, 각종 활성산소로부터 세포를 보호하는 역할을 수행하는 것으로 보고되었다. 특히, 돼지수정란의 체외배양체계에 유의적인 영향을 미치는 것으로 보고되었다(Abebydeera 등, Theriogenol., 50:747-756, 1998). 따라서 본 실험에서는 돼지난포란의 체외성숙시 $\beta$-ME의 첨가배양이 체외수정과 배발달에 미치는 영향에 관하여 조사하였다. 돼지난포란을 10% PFF, 0.1mg/ml cysteine, 10IU/m1 PMSG, 10IU/m1 hCG 및 10ng/m1 EGF가 첨가된 NCSU23 배양액에 $\beta$-ME를 각각 0, 25, 50 및 100uM을 처리하여 22시간 동안 배양을 실시하고, 성선자극호르몬이 배제된 배양액에서 추가로 22시간을 배양하여 체외성숙을 유도하였다. 체외성숙이 유기된 난자는 난구세포를 제거하고, 2.5mM caffeine과 0.1% BSA가 첨가된 mTBM배양액에 정자를 1.25 $\times$ $10^{5}$cells/ml의 농도로 5-6시간 동안 공동배양을 실시하여 체외수정을 유도하였다. 체외수정후 일부의 수정란은 12시간에 난자 급속 염색방법으로 염색하여 다정자침입률 및 자.웅전핵형성률 등을 확인하였다. 그리고 나머지1-세포기의 수정란은 0.4mg/ml BSA가 함유된 NCSU23 배양액에 30 embryos/50ul 소적으로하여 38.8$^{\circ}C$, 5% $CO_2$의 탄산가스 배양기에서 각각 7일간 배양을 실시하였다. 조사된 결과는 SAS/STAT를 이용하여 통계분석을 실시하였다. 체외수정 12시간 후에 난자 급속 염색법으로 염색을 실시한 결과, 모든 처리구에서 핵성숙률(76.4~95.2%), 정자침투율(51.1~66.9%), 웅성전핵형성률(95.2~100%), 다정자침입률(18.2~25.6%) 및 평균침입정자수(1.2~l.4개)에서 유의적인 차이가 인정되지 않았다. 체외배양 48시간 난할률을 조사한 결과, 처리구별 차이(53.9~67.9%)는 인정되지 않았으나, 배양 7일째 배반포형성률은 각각 14.5, 25.4, 17.3 및 12.4%로서 25uM의 $\beta$-ME처리구가 유의적(P<0.05)으로 높은 배발달률을 나타내었고, 총세포수에 있어서는 대조구와 처리구간 유의적인 차이가 인정되지 않았다. 따라서 돼지 난포란을 성숙배양할 때, 25uM $\beta$-ME를 첨가배양하는 것이 양질의 돼지체외수정란을 생산하는 하나의 방법으로 조사되었다.다.

  • PDF

A Study on Characteristics of Wood Pellet Gasification in Two Stage Gasifier (Two Stage Gasifier에서의 우드펠릿 가스화 특성 연구)

  • Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • In this study, characteristics of wood pellet gasification was studied using a Two Stage Gasifier which is consisted of pyrolysis reactor and ultra high temperature reformer. The average yields of $H_2$, $CH_4$, CO, $CO_2$ were 16.7, 11.3, 37.2, 26.6 L/mim, conversion rate from biomass to gas was 65% in pyrolysis reactor and gas yields in reformer were 55.4, 0.8, 120.8, 56.8 L/mim, respectively. The hydrogen flow rate from reformer is obtained 360.1 L/hr. The most of $CH_4$ was decomposed from 12.3 to 0.3 vol.% while $H_2$ is from 18.2 to 23.7 vol.% in reformer by methane dry reforming, Boudouard reaction, oxidation and/or steam reforming. The amount of $H_2O$ generated by hydration reaction from reformer was 1111.8 g, its accelerated conversion of $CH_4$ to other products. The conversion rate from $CH_4$ to other Compounds was 97.2%. Cold gas efficiency was 53.2%.

Electrochemical Characterization of Cobalt Oxide Xerogel Electrode for Supercapacitor (수퍼커패시터용 산화코발트 건조겔전극의 전기화학적 특성)

  • Kim Han-Joo;Shin Dal-Woo;Kim Yong-Chul;Kim Seong-Ho;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2000
  • So fine cobalt oxide xerogel powders were prepared by using a unique solution chemistry associated with the sol-gel process. The effect of thermal treatment on the crystalinity, particle structure, and corresponding electrochemical properties of the resulting xerogel remained amorphous as $Co(OH)_2$ up to $160^{\circ}C$ With an increase in the temperature above $200^{\circ}C$, both the surface area and pore volume decreased sharply, because the amorphous $Co(OH)_2$ decomposed to form CoO that was subsequently oxidized to form crystalline Co304. In addition, the changes in the crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 192F1g was obtained for an electrode prepared with the $CoO_x$ Xerogel calcined at$150^{\circ}C$, which was consistent with the maxima exhibited in both the surface area and pore volume. This capacitance was attributed solely to a surface redox mechanism.

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF

Reaction Gas Composition Dependence on the Properties of SnO2 Films on PET Substrate by ECR-MOCVD (반응가스조성이 PET기판위에 ECR 화학증착법에 의해 제조된 SnO2 박막특성에 미치는 영향)

  • Kim, Yun-Seok;Lee, Joong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.139-145
    • /
    • 2005
  • [ $SnO_x$ ] films on the flexible substrate of PET film were prepared at ambient temperature under a $(CH_3)_4Sn(TMT: tetra-methyl tin)-H_2-O_2$ atmosphere in order to obtain transparent conductive polymer by using ECR-MOCVD(Electro Cyclotron Resonance Metal Organic Chemical Yfpor Deposition) system. The prepared $SnO_x$ thin films show generally over $90\%$ of optical transmittance at wavelength range of 380-780nm and about $1\times10^{-2\~3}ohm{\cdot}cm$ of electrical resistivity. In the present study, effects of $O_2/TMT\;and\;H_2/TMT$ mole ratio on the properties of $SnO_x$ films are investigated and the other process parameters such as microwave power, magnetic current power, substrate distance and working pressure are fixed. Based on our experimental results, the $SnO_x$ film composition ratio of Sn and O directly influences on the electrical and optical properties of the films prepared. The $SnO_x$ film with low electric resistivity and high transmittance could be obtained by controlling the process parameters such as $O_2/TMT\;and\;H_2/TMT$ mole ratio, which play an important role to change the composition ratio between Sn and O. An increase of $O_2/TMT$ mole ratio brought on the increases 0 content in the $SnO_x$ film. On the other hand, an increase of $H_2/TMT$ mole ratio lead to decreases the oxygen content in the film. The optimized composition ratio of oxygen : tin Is determined as 2.4: 1 at $O_2/TMT$ of 80 and $H_2/TMT$ of 40 mole ratio, respectively.

A Study on the Removal of Cu Impurity on Si Substrate and Mechanism Using Remote Hydrogen Plasma (리모트 수소 플라즈마를 이용한 Si 기판 위의 Cu 불순물 제거)

  • Lee, Jong-Mu;Jeon, Hyeong-Tak;Park, Myeong-Gu;An, Tae-Hang
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.817-824
    • /
    • 1996
  • Removal of Cu impurities on Si substrates using remote H-plasma was investigated. Si substrates were intentionally contaminated by 1ppm ${CuCI}_{2}$, standard chemical solution. To determine the optimal process condition, remote H-plasma cleaning was conducted varying the parameters of rf power, cleaning time and remoteness(the distance between the center of plasma and the surface of Si substrate). After remote H-plasma cleaning was conducted, Si surfaces were analysed by TXRF(total x-ray reflection fluorescence) and AFM(atomic force microscope). The concentration of Cu impurity was reduced by more than a factor of 10 and its RMS roughness was improved by more than 30% after remote H-plasma cleaning. TXRF analysis results show that remote H-plasma cleaning is effective in eliminating Cu impurity on Si surface when it is performed under the optimal process condition. AFM analysis results also verifies that remote H-plasma cleaning makes no damage to the Si surface. The deposition mechanism of Cu impurity may be explained by the redox potential(oxidation-reduction reaction potential) theory. Based on the XPS analysis results we could draw a conclusion that Cu impurities on the Si substrate are removed together with the oxide by a "lift-off" mechanism when the chemical oxide( which forms when Cu ions are adsorbed on the Si surface) is etched off by reactive hydrogen atoms.gen atoms.

  • PDF

The Effect of addition of CuO to Fe2O3/ZrO2 Oxygen Carrier for Hydrogen Production by Chemical Looping (매체 순환식 수소제조공정에 적합한 Fe2O3/ZrO2 산소전달입자에 구리 산화물 첨가가 미치는 영향에 관한 연구)

  • Lee, Jun Kyu;Kim, Cho Gyun;Bae, Ki Kwang;Park, Chu Sik;Kang, Kyoung Soo;Jeong, Seong Uk;Kim, Young Ho;Joo, Jong Hoon;Cho, Won Chul
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.394-403
    • /
    • 2016
  • $H_2$ production by chemical looping is an efficient method to convert hydrocarbon fuel into hydrogen with the simultaneous capture of concentrated $CO_2$. This process involves the use of an iron based oxygen carrier that transfers pure oxygen from oxidizing gases to fuels by alternating reduction and oxidation (redox) reactions. The enhanced reactivities of copper oxide doped iron-based oxygen carrier were reported, however, the fundamental understandings on the interaction between $Fe_2O_3$ and CuO are still lacking. In this study, we studied the effect of dopant of CuO to $Fe_2O_3/ZrO_2$ particle on the morphological changes and the associated reactivity using various methods such as SEM/EDX, XRD, BET, TPR, XPS, and TGA. It was found that copper oxide acted as a chemical promoter that change chemical environment in the iron based oxygen carrier as well as a structural promoter which inhibit the agglomeration. The enhanced reduction reactivity was mainly ascribed to the increase in concentration of $Fe^{2+}$ on the surface, resulting in formation of charge imbalance and oxygen vacancies. The CuO doped $Fe_2O_3/ZrO_2$ particle also showed the improved reactivity in the steam oxidation compared to $Fe_2O_3/ZrO_2$ particle probably due to acting as a structural promoter inhibiting the agglomeration of iron species.