• Title/Summary/Keyword: 환원적 분해

Search Result 659, Processing Time 0.022 seconds

Decomposition and Reduction of Nitrogen Oxide on Copper Loaded Mordenites (동이 담지된 모더나이트 상에서 NO의 분해 및 환원 반응)

  • Lee, Chang-Yong;Mo, Yong-Ki;Choi, Ko-Yeol
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.111-117
    • /
    • 2002
  • Catalytic decomposition and reduction of NO have been carried out on copper loaded mordenites in a packed bed flow reactor. For the decomposition of NO, $Cu^{\circ}/HM$ exhibited higher activities than CuO/HM at high copper content, which may be related to the difference in the amount of $Cu^{2+}$ ions and the reducibility of CuO between $Cu^{\circ}/HM$ and Cuo/HM. However, $Cu^{\circ}/HM$ showed higher reduction activities than CuO/HM at low copper content. This result may be dependent on the difference in the amount of high-reducibility CuO between $Cu^{\circ}/HM$ and CuO/HM.

  • PDF

Biodegradation of PAHs in anaerobic conditions

  • 우승한;임경희;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.153-157
    • /
    • 2004
  • 다양한 혐기성 조건에서 다환방향족탄화수소(PAHs)로 오염된 토양의 미생물 분해 연구를 수행하였다. 대표적인 다환방향족탄화수소인 phenanthrene과 fluorene을 토양과 물에 오염시켜서 약 100일 동안 저감정도를 관찰하였고, 실제 다환방향족탄화수소로 오염된 현장 토양을 이용 혐기성하에서 다환방향족탄화수소의 생분해 가능성을 확인하였다. 미생물 접종원은 혐기성 조건에서 다환방향족탄화수소에 노출시킨 슬러리가 사용되었다. 황산염 환원조건, 질산염 환원조건, 메탄생성조건 등의 다양한 혐기성 조건에서 실험을 수행한 결과, 메탄생성조건 > 질산염 환원조건 > 황산염 환원조건의 순서로 분해가 잘 일어났다. 또한 현장오염토양의 경우 34일간 처리 후 메탄생성조건에서 최대 72%의 분해율을 보였다.

  • PDF

Significance of Dissimilatory Fe(III) Reduction in Organic Matter Oxidation and Bioremediation of Environmental Contaminants in Anoxic Marine Environments (혐기성 해양환경에서 철 환원세균에 의한 유기물 분해 및 생물정화)

  • Hyun Junc-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.145-153
    • /
    • 2005
  • I reviewed an ecological and environmental significance of microbial carbon respiration coupled to dis-similatory reduction of fe(III) to Fe(II) which is one of the major processes controlling mineralization of organic matter and behavior of metals and nutrients in various anaerobic environments. Relative significance of Fe(III) reduction in the mineralization of organic matter in diverse marine environments appeared to be extremely variable, ranging from negligible up to $100\%$. Cenerally, Fe(III) reduction dominated anaerobic car-bon mineralization when concentrations of reactive Fe(III) were higher, indicating that availability of reactive Fe(III) was a major factor determining the relative significance of Fe(III) reduction in anaerobic carbon mineralization. In anaerobic coastal sediments where $O_2$ supply is limited, tidal flushing, bioturbation and vegetation were most likely responsible for regulating the availability of Fe(III) for Fe(III) reducing bacteria (FeRB). Capabilities of FeRB in mineralization of organic matter and conversion of metals implied that FeRB may function as a useful eco-technological tool for the bioremediation of anoxic coastal environments contaminated by toxic organic and metal pollutants.

Application of a Numerical Model for the Prediction of Vertical Profiles of Electron Acceptors Based on Degradation of Organic Matter in Benthic Sediments (퇴적 유기물 분해과정에 따른 물질 거동 변화 예측을 위한 수치모델 적용)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.151-157
    • /
    • 2005
  • A one-dimensional numerical model was developed to simulate vertical profiles of electron acceptors and their reduced species in benthic sediments. The model accounted for microbial degradation of organic matter and subsequent chemical reactions of interest using stoichiometric relationships. Depending on the dominant electron acceptors utilized by microorganisms, the benthic sediments were assumed to be vertically subdivided into six zones: (1) aerobic respiration, (2) denitrification, (3) manganese reduction, (4) iron reduction, (5) sulfate reduction, and (6) methanogenesis. The utilizations of electron acceptors in the biologically mediated oxidation of organic matter were represented by Monod-type expression. The mass balance equations formulated for the reactive transport of organic matter, electron acceptors, and their corresponding reduced species in the sediments were solved utilizing an iterative multistep numerical method. The ability of model to simulate a freshwater sediments system was tested by comparing simulation results against published data obtained from lake sediments. The simulation results reasonably agreed with field measurements for most species, except for ammonia. This result showed that the C/N ratio (106/16) in the sediments is lower than what the Redfield formula prescribes. Since accurate estimates of vertical profiles of electron acceptors and their reduced species are important to determine the mobility and bioavailability of trace metals in the sediments, the model has potential application to assess the stability of selected trace metals in the sediments.

Reduction of perchlorate in aqueous solution using zero valence iron stabilized with alginate bead (알지네이트 비드를 이용하여 안정화한 0가 철의 수용액 상에서의 과염소산 이온의 환원 분해 특성)

  • Joo, Tae-Kyeong;Lee, Jong-Chol;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.560-565
    • /
    • 2010
  • Perchlorate ion ($ClO_4^-$) has been widely used as oxidizing agent in military weapon system such as rocket and missile fuel propellant. So it has been challenging to remove the pollutant of perchlorate ion. nanoscale zero valence iron (nZVI) particles are widely employing reduction catalyst for decomposition of perchlorate ion. nZVI particles has increasingly been utilized in groundwater purification and waste water treatment. But it have strong tendency of aggregation, rapid sedimentation and limited mobility. In this study, we focused on reduction of perchlorate ion using nZVI particles immobilized in alginate polymer bead for stabilization. The stabilized nZVI particles displayed much greater surface area, and much faster reaction rates of reduction of perchlorate ion. In this study, an efficient way to immobilize nZVI particles in a support material, alginate bead, was developed by using $Ca^{2+}$ as the cross-linking cations. The efficiency and reusability of the immobilized Fe-alginate beads on the reduction of perchlorate was tested at various temperature conditions.

Isolation of High-molecular-weight-compound degrading microorganisms and sulfate reducing Bacteria involved in Composting Process (퇴비화 과정에 관여하는 생체 고분자 분해 미생물 및 황산 환원균의 분리)

  • Lee, Seong-Taek;Lee, Jae-Jeong;Na, Hyun-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.31-37
    • /
    • 1994
  • For a microbiological study of composting process, screening and assay method for biopolymer degrading enzymes and microorganisms were developed and for the study of the possibility of composting in anaerobic state, distribution of sulfate reducing bacteria which plays a final role in anaerobic degradation was investigated. Substrates used for the development of assay methods for biopolymer degradation are ${\beta}-glucan$, xylan, dextran, CMC(carboxy methly cellulose), casein, and collagen. These substrates were made insoluble by a cross-linking agent and linked with dye to make chromogenic substrates. ${\beta}-glucan$ and xylan substrates could substitute congo-red method for screening of polymer degrading microorganisms without damaging the colonies. Sulfate reducing bacteria contained in the sample sludge showed preference to lactic acid, propionic acid, butyric acid and formic acid and could use acetic acid and valeric acid.

  • PDF

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea (강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향)

  • Mok, Jin-Sook;Cho, Hye-Youn;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

Anaerobic Mineralization of Organic Matter and Sulfate Reduction in Summer at Ganghwa Intertidal Flat, Korea (하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력)

  • Hyun, Jung-Ho;Mok, Jin Sook;Cho, Hye Youn;Cho, Byung Cheol;Choi, Joong Ki
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.117-132
    • /
    • 2004
  • Despite its significance in understanding ecological structure and biogeochemical element cycles, there have been few studies on the microbial mineralization of organic matter and mineralization pathway in the intertidal flat of Korea. We measured anaerobic mineralization of organic matter and sulfate reduction rate, and evaluated the significance of sulfate reduction in total anaerobic carbon respiration at the southern part of Ganghwa Island. Depth-integrated carbon mineralization rate down to 6 cm depth ranged from 41.9 to $89.4mmol\;m^{-2}d^{-1}$, which accounted for approximately 216 tons of organic matter mineralization in entire intertidal flat area of Ganghwa($300km^2$). The results indicated that capacity for the organic matter mineralization in the Ganghwa tidal flat is comparable to highly productive salt marsh environments. Mineralization rates in the sediment amended with acetate were 2~5 times higher than in unamended sediment. The results implied that microbial mineralization was limited by the availability of organic substrates, and the organic matter mineralization capacity seems to be higher than estimated at ambient organic substrate level. Depth-integrated sulfate reduction rates within 6 cm depth of the sediment ranged from 20.7 to $45.1mmol\;SO{_4}^{2-}m^{-2}d^{-1}$, and sulfate reduction was mostly responsible for organic matter remineralization. It should be noticed that the increase of $H_2S$ in the sulfate reduction dominated tidal flat may result in the decrease of biological diversity.

  • PDF

Electrochemical Reduction of Nitrate Ion in an Aqueous Solution (수용액에서 질산성 질소의 전기화학적 환원거동)

  • Park, J.K.;Jeon, C.J.;Lee, C.K.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.246-251
    • /
    • 2003
  • 전기분해법을 이용하여 수용액 중의 질산성 질소의 환원거동에 대한 연구를 통하여 수용액중의 질산 함량을 제어하는 연구를 수행하였다. 촉매전극을 채택한 복극전해조에서 30분의 조업에 질산 100ppm 이하의 저농도 용액은 70%, 300ppm 이상의 고농도의 경우는 90%까지 질소를 용이하게 제거할 수 있었다. 초기 질소농도가 증가하면서 한계전류밀도도 크게 증가하였으며, pH가 감소할수록 환원전류가 증가하였다. 그리고 수용액의 pH는 질소 환원반응기구에 큰 영향을 주는 것으로 판명되었으며, 산성에서는 질소형태로 중성 혹은 염기성에서는 암모니아 형태로 환원되는 것으로 추정된다.

  • PDF