• Title/Summary/Keyword: 환경 DNA

Search Result 958, Processing Time 0.025 seconds

Review and Suggestions for Applying DNA Sequencing to Zooplankton Researches: from Taxonomic Approaches to Biological Interaction Analysis (동물플랑크톤 연구에 있어 DNA 분석 기법의 활용 방법과 과제: 개체 동정에서 군집 분석, 생물학적 상호작용 분석까지)

  • Oh, Hye-Ji;Chae, Yeon-Ji;Choi, Yerim;Ku, Doyeong;Heo, Yu-Ji;Kwak, Ihn-Sil;Jo, Hyunbin;Park, Young-Seuk;Chang, Kwang-Hyeon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.156-169
    • /
    • 2021
  • Traditional morphological identification difficulties, such as phenotypic plasticity, misidentification of cryptic species, and larval stage species, can be compensated for by using DNA analysis techniques, such as DNA barcoding, in surveying zooplankton populations, including species identification. Recently, the rapid development of DNA sequencing techniques has allowed DNA-based community analysis not only for zooplankton assemblages in various aquatic ecosystems but also for the gut contents of zooplankton that are limited by conventional methods such as visual and microscopic identification. Therefore, the application of DNA sequencing can help understand biological interactions through the analysis of zooplankton food sources. The present paper introduces the major DNA-based approaches in zooplankton research topics, including taxonomic approaches by DNA barcoding, community-level approaches by metabarcoding, and gut content analyses, summarizes the analysis methods, and finally suggests the methodological topics that need to be considered for future applications.

Identification of Freshwater Fish Species in Korea Using Environmental DNA Technique - From the Experiment at the Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do - (환경DNA 기술을 이용한 국내 담수어류종 탐지 가능성 - 경기도 민물고기생태학습관 중심으로 -)

  • Kim, Gawoo;Song, Youngkeun
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This study focused on verifying the identification of freshwater fish species in Korea using Environmental DNA (eDNA) technique. The research of DNA is increasing in the field of ecology, since this is more sensitive of identify rather than traditional investigation method. Which is difficult to detect species hidden in water and be easily influenced by diverse factors (sites, bad weather, researchers and so on). We applied the pilot test in aquarium (Freshwater Fish Ecological Learning Center in Yangpyeong, Gyeonggi Do), where freshwater fish species are inhabits. We conducted to sampling and analyzing the sixteen water samples (50 species from 7 orders and 13 families) using MiFish primer set. The results showed that 45 species (90%) was investigated by eDNA. It highlight that eDNA with universal primer is possible to detect freshwater fish species of Korean. However, the errors on species identification seems to be caused by the primer that be not suited perfectly and the pollution such as aquarium, sampling collectors.

Sampling and Extraction Method for Environmental DNA (eDNA) in Freshwater Ecosystems (수생태계의 환경유전자(environmental DNA: eDNA) 채집 및 추출기술)

  • Kim, Keonhee;Ryu, Jeha;Hwang, Soon-jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.170-189
    • /
    • 2021
  • Environmental DNA (eDNA) is a genetic material derived from organisms in various environments (water, soil, and air). eDNA has many advantages, such as high sensitivity, short investigation time, investigation safety, and accurate species identification. For this reason, it is used in various fields, such as biological monitoring and searching for harmful and endangered organisms. To collect eDNA from a freshwater ecosystem, it is necessary to consider the target organism and gene and a wide variety of items, such as on-site filtration and eDNA preservation methods. In particular, the method of collecting eDNA from the environment is directly related to the eDNA concentration, and when collecting eDNA using an appropriate collection method, accurate (good quality) analysis results can be obtained. In addition, in preserving and extracting eDNA collected from the freshwater ecosystem, when an accurate method is used, the concentration of eDNA distributed in the field can be accurately analyzed. Therefore, for researchers at the initial stage of eDNA research, the eDNA technology poses a difficult barrier to overcome. Thus, basic knowledge of eDNA surveys is necessary. In this study, we introduced sampling of eDNA and transport of sampled eDNA in aquatic ecosystems and extraction methods for eDNA in the laboratory. In addition, we introduced simpler and more efficient eDNA collection tools. On this basis, we hope that the eDNA technique could be more widely used to study aquatic ecosystems and help researchers who are starting to use the eDNA technique.

CEO's Innovation DNA and Innovation : Fit of Environment (경영자 혁신DNA와 혁신 : 환경 적합성)

  • Kim, Seung Ho;Huh, Moo Yul
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.10 no.1
    • /
    • pp.95-110
    • /
    • 2015
  • Most innovation related theories including entrepreneurship theory regard the CEO's innovative competencies as the starting point of innovation. The study was investigated the relationship between CEO's innovation DNA and Innovation and the effects of environmental fit in their relation. For the empirical test, the sample was collected from 110 manufacturing companies in Daegu and Gyeongbook region. The results as follows: First, Innovation DNA has generally significant positive effect on innovation. The effect of discovery DNA is stronger than operating DNA to the product innovation, but the operating DNA stronger than the discovery DNA to the process innovation. The fit between CEO's innovative DNA and exogenous environmental turbulence make a strength innovation. The supplementary fit between discovery DNA and technology turbulence and complementary fit between discovery DNA and market turbulence reinforce product innovation. Process innovation were strengthen by the complementary fit between operating DNA and market turbulence.

  • PDF

Monitoring the presence of wild boar and land mammals using environmental DNA metabarcoding - Case study in Yangpyeong-gun, Gyeonggi-do - (환경 DNA 메타바코딩을 활용한 멧돼지 및 육상 포유류 출현 모니터링 - 경기도 양평군 일대를 중심으로 -)

  • Kim, Yong-Hwan;Han, Youn-Ha;Park, Ji-Yun;Kim, Ho Gul;Cho, Soo-Hyun;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.133-144
    • /
    • 2021
  • This study aims to estimate location of land mammals habitat by analyzing spatial data and investigate how to apply environmental DNA monitoring methodology to lotic system in Yangpyeong-gun, Gyeonggi-do. Environmental DNA sampling points are selected through spatial analysis with QGIS open source program by overlaying Kernel density of wild boar(Sus scrofa), elevation, slope and land-cover map, and 81 samples are collected. After 240 mL of water was filtered in each sample, metabarcoding technique using MiMammal universal primer was applied in order to get a whole list of mammal species whose DNA particles contained in filtered water. 8 and 22 samples showed DNA of wild boar and water deer, respectively. DNA of raccoon dog, Eurasian otter, and Siberian weasel are also detected through metabarcoding analysis. This study is valuable that conducted in outdoor lotic system. The study suggests a new wildlife monitoring methodology integrating overlayed geographic data and environmental DNA.

A Review on the Current Methods for Extracting DNA from Soil and Sediment Environmental Samples (토양 및 퇴적토 환경 시료로부터 DNA 추출하는 방법에 대한 고찰)

  • Yoo, Keun-Je;Lee, Jae-Jin;Park, Joon-Hong
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.3
    • /
    • pp.57-67
    • /
    • 2009
  • In soil and sediment environment, microorganisms play major roles in biochemical cycles of ecological significant elements. Because of its ecological significance, microbial diversity and community structure information are useful as indexes for assessing the quality of subsurface ecological environment and bioremediation. To achieve more accurate assessment, it is requested to gain sufficient yield and purity of DNA extracted from various soil and sediment samples. Although there have been a large number of basic researches regarding soil and sediment DNA extraction methods, little guideline information is given in literature when choosing optimal DNA extraction methods for various purposes such as environmental ecology impact assessment and bioremediation capability evaluation. In this study, we performed a thorough literature review to compare the characteristics of the current DNA extraction methods from soil and sediment samples, and discussed about considerations when selecting and applying DNA extraction methods for environmental impact assessment and bioremediation capability evaluation. This review suggested that one approach is not enough to gain the suitable quantity and yield of DNA for assessing microbial diversity, community structure and population dynamics, and that a careful attention has to be paid for selecting an optimal method for individual environmental purpose.

Environmental Toxic Agents on Genetic Material and Cellular Ativity V. The Roles of DNA Polymerases on Mutagen-Induced DNA Repair Synthesis in Relation to Cell Cycle in Chinese Hamster Ovary Cells (환경성 유해요인이 유전물질과 세포활성에 미치는 영향 V. CHO세포에서 세포주기에 따라 돌연변이원에 의해 유발된 DNA회복합성에 미치는 DNA중합효소의 역할)

  • 엄경일;김춘광;신은주;문용석;이천복
    • Environmental Mutagens and Carcinogens
    • /
    • v.9 no.1
    • /
    • pp.23-32
    • /
    • 1989
  • Chinese hamster ovary (CHO)-K1 cells echibited a differential sensitivity in the process of DNA repair synthesis induced by ethyl methanesulfonate (EMS) or bleomycin (BLM) in relation to cell cycle. Two assays were employed in this study: alkaline elution and unscheduled DNA synthesis. The post-treat-ment with aphidicolin (APC), an inhibitor of DNA polymerase alpha, inhibited DNA repair synthesis induced by EMS in G2 phase, while APC did not show any effect on BLM-induced DNA repair synthesis in all phases. On the other hands, the 2', 3'-dideoxythymidine (ddTTP), an inhibitor of DNA polymerase beta, inhibited DNA repair synthesis induced by EMS or BLM in both of G1 and G2 phases. These results suggested that the involvement of DNA polymerase alpha and beta in DNA repair was dependent on cell stage or used chemical agent.

  • PDF

Application of Environmental DNA (eDNA) for Marine Biodiversity Analysis (해양생물 다양성 연구를 위한 환경유전자(eDNA)의 적용)

  • Soyun Choi;Seung Jae Lee;Eunkyung Choi;Euna Jo;Jinmu Kim;Minjoo Cho;Jangyeon Kim;Sooyeon Kwon;Hyun Park
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.93-103
    • /
    • 2023
  • eDNA, an abbreviation for environmental DNA, means DNA derived from organisms inhabiting in a specific environment. The utilization of eDNA extracted from environmental samples allows for efficient and accurate monitoring of organisms inhabiting the respective environment. Specifically, eDNA obtained from seawater samples can be used to analyze marine biodiversity. After collecting seawater samples and extracting eDNA, metagenome analysis enables the taxonomic and diversity analysis among marine organisms inhabiting the sampled area. This review proposed an overall process of marine biodiversity analysis by utilizing eDNA from seawater. Currently, the application of eDNA for analyzing marine biodiversity in domestic setting is not yet widespread. This review can contribute to establishment of marine eDNA research methods in Korea, providing valuable assistance in standardizing the use of eDNA in marine biodiversity studies.

Single Cell Gel Electrophoresis (comet assay) to Detect DNA Damage and Apoptosis in Cell Level (DNA damage와 Apoptosis를 정량화하는 단세포전기영동법)

  • 류재천;김현주;서영록;김경란
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1997
  • The single cell gel electrophoressis(SCGE) assay, also known as the comet assay, is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakage in mammalian cells. The SCGE or comet assay is a promising test for the detection of DNA damage and repair in individnal cells. It has widespread potential applications in DNA damage and repair studies, genotoxicity testing and biomonitoring. In this microgel electrophoresis technique, cells are embedded in agarose gel on microscope slides, iysed and electrophoresed under alkaline conditions. Cells with increased DNA damage display increased migration of DNA from the nucleus towards the anode. The length of DNA migration indicates the amount of DNA breakage in the cell. The comet assay is also capable of identifying apoptotic cells which contain highly fragmented DNA. Here we review the development of the SCGE assay, existing protocols for the detection and analysis of comets, the relevant underlying principles determining the behaviour of DNA and the potential applications of the technique.

  • PDF

Mitochondrial DNA Analysis in Fusants of Ganoderma lucidum and Lentinus edodes (영지버섯과 표고버섯 원형질 융합체의 미토콘드리아 DNA 검색)

  • 최은주;정영자;이영재;김병각;현진원
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.3
    • /
    • pp.199-204
    • /
    • 2002
  • It has been known that Ganoderma lucidum and Lentinus edodes have anticancer activity and immune enhancing activity. These two mushrooms were grown in liquid culture and harvested. From these mycelia, DNA was isolated and EtBr-CsCl density gradient ultracentrifugation was performed to purify it further. Then mitochondrial DNA was isolated by bisbenzimide-CsCl density ultracentrifugaton. Mitochondrial DNA of Ganoderma lucidum was digested by restriction enzymes, EcoR I, Hind Ⅲ, and Pst I, then electrophoresed. It showed 12, 22, 4 fragments. Mitochondrial DNA of Lentinus edodes was digested by EcoR I. Electric pattern showed 6 fragments. 4 fragments had appeared by Pst 1 digested mitochondrial DNA. Hind ill couldn't digest mitochondrial DNA of Lentinus edodes. Mitochondrial DNA of fusants was isolated to compare to those of parents. The results showed that fusant P₂S₄has new, recombined mitochondrial DNA. But P₂S₄had the same DNA that Ganoderma lucidum had.

  • PDF