• Title/Summary/Keyword: 환경 하중

Search Result 1,317, Processing Time 0.026 seconds

Estimation of Non-linear Strength and Stiffness for Silty Sands (실트질 모래지반의 비선형 강도 및 강성도 추정법)

  • Lee Kyung-Sook;Kim Hyun-Ju;Lee Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.35-44
    • /
    • 2006
  • In general typically granular soils contain a certain amount of fines. It is also widely recognized that foundation soils under working loads show highly non-linear behavior from very early stages of loading. In the present study, a series of laboratory tests with sands of different silt contents are conducted and methods to assess strength and stiffiness characteristics are proposed. Modified hyperbolic stress-strain model is used to analyze non-linearity of silty sands in terms of non-linear Degradation parameters f and g as a function of silt contents and Relative density Dr. Stress-strain curves were obtained from a series of triaxial tests on sands containing different amounts of silt. Initial shear modulus, which is used to normalize Degradation modulus of silty sands, was determined from resonant column test results. From the laboratory test results, it was observed that, as the Relative density increases, values of f decrease and those of g increase. In addition, it was found that values of f and g increase and decrease respectively as a Skeleton void ratio $(e_{sk})$ increases.

A Case Study on the Hybrid Reinforcement Retaining Wall System Reinforced by Soil Nail and Steel Strip (쏘일네일과 강재스트립으로 보강된 복합보강토옹벽 시스템의 사례연구)

  • Chun, Byung-Sik;Kim, Hong-Taek;Cho, Hyun-Soo;Do, Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.5-12
    • /
    • 2008
  • The reinforced earth wall, which is able to improve the strength of soil highly, is required in case of supporting high surcharge load such as high speed rail way, high embankment road, and massive reinforced earth wall in a mountainous area. And also, it is continuously required that the method is able to minimize the amount of excavated soil on account of environmental issue, boundary of land, etc., on excavation site. However, because the required length of reinforcement should be $60{\sim}80%$ of the height of reinforced earth wall for general reinforced earth wall, in fact the reinforced earth wall is hardly applied on the site of cut slope. In this paper we studied the design and construction cases of hybrid reinforcement retaining wall system combined with steel strips and soil nails, connecting the reinforced earth wall reinforcements to the slope stability reinforcements (soil nails) to ensure sufficient resistance by means of reducing the length of reinforcements of reinforced earth wall. And the feasibility of hybrid reinforcement retaining wall system, suggested by real data measured on site, is also discussed.

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.

Reliability Estimation of Static Design Methods for Driven Steel Pipe Piles in Korea (국내 항타강관말뚝 설계법의 신뢰성평가)

  • Huh, Jung-Won;Park, Jae-Hyun;Kim, Kyung-Jun;Lee, Ju-Hyung;Kwak, Ki-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.61-73
    • /
    • 2007
  • As a part of Load and Resistance Factor Design(LRFD) code development in Korea, in this paper an intensive reliability analysis was performed to evaluate reliability levels of the two static bearing capacity methods for driven steel pipe piles adopted in Korean Standards for Structure Foundations by the representative reliability methods of First Order Reliability Method(FORM) and Monte Carlo Simulation(MCS). The resistance bias factors for the two static design methods were evaluated by comparing the representative measured bearing capacities with the design values. In determination of the representative bearing capacities of driven steel pipe piles, the 58 data sets of static load tests and soil property tests were collected and analyzed. The static bearing capacity formula and the Meyerhof method using N values were applied to the calculation of the expected design bearing capacity of the piles. The two representative reliability methods(FORM, MCS) based computer programs were developed to facilitate the reliability analysis in this study. Mean Value First Order Second Moment(MVFOSM) approach that provides a simple closed-form solution and two advanced methods of FORM and MCS were used to conduct the intensive reliability analysis using the resistance bias factor statistics obtained, and the results were then compared. In addition, a parametric study was conducted to identify the sensibility and the influence of the random variables on the reliability analysis under consideration.

System Reliability-Based Design Optimization Using Performance Measure Approach (성능치 접근법을 이용한 시스템 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.193-200
    • /
    • 2010
  • Structural design requires simultaneously to ensure safety by considering quantitatively uncertainties in the applied loadings, material properties and fabrication error and to maximize economical efficiency. As a solution, system reliability-based design optimization (SRBDO), which takes into consideration both uncertainties and economical efficiency, has been extensively researched and numerous attempts have been done to apply it to structural design. Contrary to conventional deterministic optimization, SRBDO involves the evaluation of component and system probabilistic constraints. However, because of the complicated algorithm for calculating component reliability indices and system reliability, excessive computational time is required when the large-scale finite element analysis is involved in evaluating the probabilistic constraints. Accordingly, an algorithm for SRBDO exhibiting improved stability and efficiency needs to be developed for the large-scale problems. In this study, a more stable and efficient SRBDO based on the performance measure approach (PMA) is developed. PMA shows good performance when it is applied to reliability-based design optimization (RBDO) which has only component probabilistic constraints. However, PMA could not be applied to SRBDO because PMA only calculates the probabilistic performance measure for limit state functions and does not evaluate the reliability indices. In order to overcome these difficulties, the decoupled algorithm is proposed where RBDO based on PMA is sequentially performed with updated target component reliability indices until the calculated system reliability index approaches the target system reliability index. Through a mathematical problem and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

Side Shear Resistance of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 주면지지력)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.205-212
    • /
    • 2008
  • In this research, the effect of rock mass weathering on the side shear resistance of drilled shaft socketed into igneous-metamorphic rock was investigated. For that, 23 cast-in-place concrete piles with diameters varying from 400mm to 1,500mm were constructed at four different sites, and the static axial load tests were performed to examine the resistant behavior of the piles. A comprehensive field/laboratory testing program at the field test site was also performed to describe the in situ rock mass conditions quantitatively. The side shear resistance of rock socketed piles was found to have no intimate correlation with the compressive strength of the intact rock. However, the global rock mass strength, which was calculated by the Hoek and Brown criteria, was found to closely correlate to the side shear resistance. The ground investigation data regarding the rock mass conditions (e.g. $E_m$, $E_{ur}$, $p_{lm}$, RMR, RQD, j) were also found to be highly correlated with the side shear resistance, showing the coefficients of correlation greater than 0.75 in most cases. Additionally, the applicability of existing methods for the side shear resistance of weathered granite-gneiss was verified by comparison with the field test data. The existing methods which consider the effect of rock mass condition were modified and/or extended for weathered rock mass where mass factor j is lower than 0.15, and RQD is below 50%.

An Evaluation of Crack Resistance for Slag Asphalt Concrete Mixture Using Steel Slag Aggregates (제강슬래그 골재를 사용한 슬래그 아스팔트 혼합물의 균열저항성 평가)

  • Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-77
    • /
    • 2023
  • With the continuous industrial development, not only natural resource depletion, waste generation, but also various weather conditions are becoming more frequent. Efforts are continuing to recycle industrial by-products to overcome the climate crisis and save resources. Slag is a representative by-product generated in the steel industry, and it is characterized by improving rutting resistance and moisture sensitivity by increasing strength and reducing deformation when used as a material for asphalt concrete. On the other hand, slag has expansion properties so it is used as a relatively low-value-added material such as embankment and refilling materials. In order to expand the application of slag, an experiment was conducted to evaluate the crack resistance of slag asphalt concrete pavement. As a result of the indirect tensile strength test, it was found that the asphalt mixture using slag aggregate showed a value 1.13 times higher than that of the general HMA with the same particle size, and the toughness was 1.17 units, improving crack resistance. In addition, it was found that the failure number of the 4-point beam fatigue experiment and the slag asphalt mixture was 20,409, which was more than doubled compared to the general HMA. Furthermore, Overlay Test showed a tensile load residual rate of 4 times or more, improving crack resistance to repeated fatigue. Accordingly, the use of slag aggregate will likely have various advantages in improving the performance of asphalt concrete pavement.

Life-Cycle Cost Effective Optimal Seismic Retrofit and Maintenance Strategy of Bridge Structures - (I) Development of Lifetime Seismic Reliability Analysis S/W (교량의 생애주기비용 효율적인 최적 내진보강과 유지관리전략 - (I) 생애주기 지진신뢰성해석 프로그램 개발)

  • Lee, Kwang-Min;Choi, Eun-Soo;Cho, Hyo-Nam;An, Hyoung-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.965-976
    • /
    • 2006
  • A realistic lifetime seismic-reliability based approach is unavoidable to perform Life-Cycle Cost (LCC)-effective optimum design, maintenance, and retrofitting of structures against seismic risk. So far, though a number of researchers have proposed the LCC-based seismic design and retrofitting methodologies, most researchers have only focused on the methodological point. Accordingly, in most works, they have not been quantitatively considered critical factors such as the effects of seismic retrofit, maintenance, and environmental stressors on lifetime seismic reliability assessment of deteriorating structures. Thus, in this study, a systemic lifetime seismic reliability analysis methodology is proposed and a program HPYER-DRAIN2DX-DS is developed to perform the desired lifetime seismic reliability analysis. To demonstrate the applicability of the program, it is applied to an example bridge with or without seismic retrofit and maintenance strategies. From the numerical investigation, it may be positively stated that HYPER-DRAIN2DX-DS can be utilized as a useful numerical tool for LCC-effective optimum seismic design, maintenance, and retrofitting of bridges.

Robust Analysis of a μ-Controller for a Cable-Stayed Bridge with Various Uncertainties (사장교에서 다양한 불확실성에 대한 μ-제어기의 강인성 해석)

  • Park, Kyu Sik;Spencer, B.F.Jr.;Kim, Chun Ho;Lee, In Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.849-859
    • /
    • 2006
  • This paper presents an extensive robust analysis of a ${\mu}$-controller in the hybrid system for various uncertainties using the benchmark cable-stayed bridge. The overall system robustness may be deteriorated by introducing active devices and the active controller may cause instability due to small margins. Therefore, a ${\mu}$-synthesis method that simultaneously guarantees the performance and stability of the closed-loop system (robust performance) with uncertainties is used for active devices to enhance the robustness in company with the inherent reliability of passive devices. The robustness of the ${\mu}$-synthesis method is investigated with respect to the additional mass on the deck, structural stiffness matrix perturbation, time delay of actuator, and combinations thereof. Numerical simulation results show that the proposed control system has the good robustness without loss of control performances with respect to various uncertainties under earthquakes considered in this study. Furthermore, the control system robustness is more affected by the perturbation of structural stiffness matrix than others considered in this study. Therefore, the hybrid system controlled by a ${\mu}$-synthesis method could be proposed as an improved control strategy for a seismically excited cable-stayed bridge containing many uncertainties.

Nonlinear Analysis of Steel-concrete Composite Girder Using Interface Element (경계면 요소를 사용한 강·콘크리트 혼합 거더의 비선형 거동 해석)

  • Kwon, Hee-Jung;Kim, Moon Kyum;Cho, Kyung Hwan;Won, Jong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.281-290
    • /
    • 2009
  • In this study, an analysis technique of hybrid girder considering nonlinearity of steel-concrete contact surface is presented. Steel-concrete hybrid girder shows partial-interaction behavior due to the deformation of shear connectors, slip and detachment at the interface, and cracks under the applied loads. Therefore, the partial-interaction approach becomes more reasonable. Contact surface is modeled by interface element and analyzed nonlinearly because of cost of time and effort to detailed model and analysis. Steel and Concrete are modeled considering non-linearity of materials. Material property of contact surface is obtained from push-out test and input to interface element. For the constitutive models, Drucker-Prager and smeared cracking model are used for concrete in compression and tension, respectively, and a von-Mises model is used for steel. This analysis technique is verified by comparing it with test results. Using verified analysis technique, various analyses are performed with different parameters such as nonlinear material property of interface element and prestress. The results are compared with linear analysis result and analysis result with the assumption of full-interaction.