• Title/Summary/Keyword: 환경 매핑

Search Result 333, Processing Time 0.021 seconds

Characteristics of NH3 Decomposition according to Discharge Mode in Elongated Rotating Arc Reactor (신장 회전아크 반응기에서 방전모드에 따른 암모니아 분해특성)

  • Kim, Kwan-Tae;Kang, Hee Seok;Lee, Dae Hoon;Jo, Sung Kwon;Song, Young-Hoon;Kim, In Myoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.5
    • /
    • pp.356-362
    • /
    • 2013
  • An attempt has been made to optimize elongated rotating arc plasma $NH_3$ scrubber. Among diverse semiconductor processes, diffusion and implantation process inevitably produce $NH_3$ as byproduct and efficient dry process for the decomposition of $NH_3$ is required. Plasma process does not produce NOx that is commonly produced in combustion process and there is no problem of deactivation, usually experienced in catalyst process. However, plasma process uses electrical energy and needs to be optimized to achieve feasibility of application. In this work, mode control of rotating arc is presented as tentative solution for the possible optimization of the process. Based on existing rotating arc, scale-up and following mode mapping was tried. Proposed reactor design was evaluated in the $NH_3$ decomposition process and revealed that optimization scheme is at hand. In the experiment of full scale scrubber including heat exchanger, the process gave more stable and efficient process of $NH_3$ decomposition.

An Ontology-based Collaboration System for Service Interoperability (온톨로지 기반의 서비스 상호운용을 위한 협업 시스템)

  • Hwang, Chi-Gon;Moon, Seok-Jae;Jung, Kye-Dong;Choi, Young-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.210-217
    • /
    • 2013
  • The development of collaboration among information systems in accordance with changes in enterprises' business environment brings about the problems of duplication of the existing business services and increase in costs of maintenance. Accordingly, Web service has been suggested as the standard of distributed computing to prevent the duplication of services within the same business domain and to attain the services that are already being utilized. But since the data needed for Web services are not standardized, it is difficult for the users to find services that meet diverse business purposes. In this paper, we construct an ontology-based collaboration system for service interoperability. The ontology can support fusion service by finding services which are existed interdependently under the distributed environment for collaboration processing. The role of the collaborative system includes development, registration and call of services based on ontology. A local systems request collaboration support through the service profile. Collaborative system supports the development of service using the service profiles, represents the semantic association between real data through system ontology, and infers relationship between instances contained in the services. Based on this, we applied the travel booking services for collaboration system. As a result, service can be managed effectively preventing collision in collaborative system, and we verify that the mapping between system is reduced.

A Study on the Habitat Mapping of Meretrix lyrata Using Remote Sensing at Ben-tre Tidal Flat, Vietnam (원격탐사를 활용한 베트남 Ben-tre 갯벌의 Meretrix lyrata 서식지 매핑 연구)

  • Hwang, Deuk Jae;Woo, Han Jun;Koo, Bon Joo;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.975-987
    • /
    • 2021
  • Potential habitat mapping of Meretrix lyrata which is found in large parts of South East Asian tidal flat was carried out to find out causes of collective death. Frequency Ratio (FR) method, one of geospatialstatistical method, was employed with some benthic environmental factors; Digital elevation model (DEM) made from Landsat imagery, slope, tidal channel distance, tidal channel density, sedimentary facesfrom WorldView-02 image. Field survey was carried out to measure elevation of each station and to collect surface sediment and benthos samples. Potential habitat maps of the all clams and the juvenile clams were made and accuracy of each map showed a good performance, 76.82 % and 69.51 %. Both adult and juvenile clams prefer sand dominant tidal flat. But suitable elevation of adult clams is ranged from -0.2 to 0.2 m, and that of juvenile clams is ranged from 0 to 0.3 m. Tidal channel didn't affect the habitat of juvenile clams, but it affected the adult clams. In the furtherstudy, comparison with case of Korean tidal flat will be carried out to improve a performance of the potential habitat map. Change in the benthic echo-system caused by climate change will be predictable through potential habitat mapping of macro benthos.

A Study on Metadata Schema Development for the Use, Management and Preservation of Industrial Heritage Resources (산업유산자원의 이용·관리·보존을 위한 메타데이터 요소 설계에 관한 연구)

  • Baek, Jae-Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.2
    • /
    • pp.231-254
    • /
    • 2022
  • Industrial heritage resources produced by industrial activities have historical and conservative values and value as cultural properties as they serve as a medium connecting the past, present, and future. In other words, Industrial heritage resources should be used, managed, and preserved simultaneously as important records and evidence for the future. Metadata is well known as a necessary and important factor for the use, management, and preservation of information resources. In particular, in order to describe various industrial heritage resources that have historical, cultural, and conservative values, metadata elements from various perspectives are needed to relate to the story, type etc. of data. Therefore, this study attempted to design metadata elements that can comprehensively describe different types of industrial heritage resources. And we designed metadata that suited for the purpose of using, managing, and preserving industrial heritage resources, through mapping and combination between industrial heritage-related metadata. As a result, metadata was grouped into five types(administrative, descriptive, preservation, technical, use) and prepared into a total of 25 higher & 86 lower elements.

Development and Application of a Coastal Disaster Resilience Measurement Model for Climate Change Adaptation: Focusing on Coastal Erosion Cases (기후변화 적응을 위한 연안 재해 회복탄력성 측정 모형의 개발 및 적용: 연안침식 사례를 중심으로)

  • Seung Won Kang;Moon Suk Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.713-723
    • /
    • 2023
  • Climate change is significantly affecting coastal areas, and its impacts are expected to intensify. Recent studies on climate change adaptation and risk assessment in coastal regions increasingly integrate the concepts of recovery resilience and vulnerability. The aim of this study is to develop a measurement model for coastal hazard recovery resilience in the context of climate change adaptation. Before constructing the measurement model, a comprehensive literature review was conducted on coastal hazard recovery resilience, establishing a conceptual framework that included operational definitions for vulnerability and recovery resilience, along with several feedback mechanisms. The measurement model for coastal hazard recovery resilience comprised four metrics (MRV, LRV, RTSPV, and ND) and a Coastal Resilience Index (CRI). The developed indices were applied to domestic coastal erosion cases, and regional analyses were performed based on the index grades. The results revealed that the four recovery resilience metrics provided insights into the diverse characteristics of coastal erosion recovery resilience at each location. Mapping the composite indices of coastal resilience indicated that the areas along the East Sea exhibited relatively lower coastal erosion recovery resilience than the West and South Sea regions. The developed recovery resilience measurement model can serve as a tool for discussions on post-adaptation strategies and is applicable for determining policy priorities among different vulnerable regional groups.

An Exploratory Study on the Effect of LCZ Type on Particulate Matter (LCZ 유형이 미세먼지에 미치는 영향에 관한 탐색적 연구)

  • Yeonju Kim;Hansol Mun;Juchul Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.5
    • /
    • pp.338-352
    • /
    • 2023
  • As of 2019, Korea's fine dust is the most severe among 38 OECD countries, and in the same year, 「the Framework on Disaster and Safety Management」 was revised to define fine dust as a social disaster. Currently, the government is working to achieve its emission reduction goals by preparing a comprehensive fine dust management plan (2022-2023) consisting of a total of five areas, 42 tasks, and 177 detailed tasks. However, it is necessary to come up with measures in consideration of the various spatial characteristics of the city, not just as a source of emission. Therefore, in this study, the shape of the city was classified using the LCZ (Local Climate Zone) classification system into 17 types by building type and land cover type in Busan, and the average annual PM10 and PM2.5 concentration were mapped using the IDW technique. In addition, Fragstats and Moving Window were used to quantify the LCZ classification system. Finally, correlation analysis and regression analysis were conducted to analyze the relationship between the LCZ classification system and PM10 and PM2.5. As a result, it was confirmed that the type of low height of the building and the type of green space with trees had a positive effect on the concentration of PM10 and PM2.5. Therefore, this study is expected to be used as basic data to establish fine dust reduction policies based on efficient spatial planning.

Computer Vision Approach for Phenotypic Characterization of Horticultural Crops (컴퓨터 비전을 활용한 토마토, 파프리카, 멜론 및 오이 작물의 표현형 특성화)

  • Seungri Yoon;Minju Shin;Jin Hyun Kim;Ho Jeong Jeong;Junyoung Park;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2024
  • This study explored computer vision methods using the OpenCV open-source library to characterize the phenotypes of various horticultural crops. In the case of tomatoes, image color was examined to assess ripeness, while support vector machine (SVM) and histogram of oriented gradients (HOG) methods effectively identified ripe tomatoes. For sweet pepper, we visualized the color distribution and used the Gaussian mixture model for clustering to analyze its post-harvest color characteristics. For the quality assessment of netted melons, the LAB (lightness, a, b) color space, binary images, and depth mapping were used to measure the net patterns of the melon. In addition, a combination of depth and color data proved successful in identifying flowers of different sizes and distances in cucumber greenhouses. This study highlights the effectiveness of these computer vision strategies in monitoring the growth and development, ripening, and quality assessment of fruits and vegetables. For broader applications in agriculture, future researchers and developers should enhance these techniques with plant physiological indicators to promote their adoption in both research and practical agricultural settings.

A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM) (국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구)

  • Shin, Philip Wootaek;Lee, Jinhee;Kim, Jeongwoo;Shin, Dongsun;Lee, Youngsang;Hwang, Seung Ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.169-178
    • /
    • 2020
  • The reductions of troops/human resources, and improvement in combat power have made Korean Department of Defense actively adapt 4th Industrial Revolution technology (Artificial Intelligence, Big Data). The defense information system has been developed in various ways according to the task and the uniqueness of each military. In order to take full advantage of the 4th Industrial Revolution technology, it is necessary to improve the closed defense datamanagement system.However, the establishment and usage of data standards in all information systems for the utilization of defense big data and artificial intelligence has limitations due to security issues, business characteristics of each military, anddifficulty in standardizing large-scale systems. Based on the interworking requirements of each system, data sharing is limited through direct linkage through interoperability agreement between systems. In order to implement smart defense using the 4th Industrial Revolution technology, it is urgent to prepare a system that can share defense data and make good use of it. To technically support the defense, it is critical to develop Multi Repository Meta-Data Management (MRMM) that supports systematic standard management of defense data that manages enterprise standard and standard mapping for each system and promotes data interoperability through linkage between standards which obeys the Defense Interoperability Management Development Guidelines. We introduced MRMM, and implemented by using vocabulary similarity using machine learning and statistical approach. Based on MRMM, We expect to simplify the standardization integration of all military databases using artificial intelligence and bigdata. This will lead to huge reduction of defense budget while increasing combat power for implementing smart defense.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

A Study on the Construction of Near-Real Time Drone Image Preprocessing System to use Drone Data in Disaster Monitoring (재난재해 분야 드론 자료 활용을 위한 준 실시간 드론 영상 전처리 시스템 구축에 관한 연구)

  • Joo, Young-Do
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.143-149
    • /
    • 2018
  • Recently, due to the large-scale damage of natural disasters caused by global climate change, a monitoring system applying remote sensing technology is being constructed in disaster areas. Among remote sensing platforms, the drone has been actively used in the private sector due to recent technological developments, and has been applied in the disaster areas owing to advantages such as timeliness and economical efficiency. This paper deals with the development of a preprocessing system that can map the drone image data in a near-real time manner as a basis for constructing the disaster monitoring system using the drones. For the research purpose, our system is based on the SURF algorithm which is one of the computer vision technologies. This system aims to performs the desired correction through the feature point matching technique between reference images and shot images. The study area is selected as the lower part of the Gahwa River and the Daecheong dam basin. The former area has many characteristic points for matching whereas the latter area has a relatively low number of difference, so it is possible to effectively test whether the system can be applied in various environments. The results show that the accuracy of the geometric correction is 0.6m and 1.7m respectively, in both areas, and the processing time is about 30 seconds per 1 scene. This indicates that the applicability of this study may be high in disaster areas requiring timeliness. However, in case of no reference image or low-level accuracy, the results entail the limit of the decreased calibration.