• Title/Summary/Keyword: 환경 감지

Search Result 1,344, Processing Time 0.032 seconds

참굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링 시스템 연구 (빈산소에서 홀 소자를 이용한 패각운동 측정) (Bio-monitoring System using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) (Detecting Abnormal Shell Valve Movements Under Hypoxia Water using Hall Element Sensor))

  • 전진영;문수연;오석진
    • 한국해양생명과학회지
    • /
    • 제1권1호
    • /
    • pp.25-30
    • /
    • 2016
  • 본 연구는 소형화된 홀 소자를 이용하여 국내 패류 양식 생물 중 가장 많은 생산량을 보이는 참굴(Crassostrea gigas)의 패각운동을 기초로, 연안역에서 빈산소에 대한 생물모니터링 시스템의 적용 가능성을 조사하였다. 정상상태 패각운동의 측정을 위해서 여과해수에서 측정한 결과, 참굴 개체는 평균 5~12 mm 정도의 개각상태를 유지하였으며, 패각운동 시 비교적 빠른 폐각상태를 보였다가 느린 속도의 개각상태의 운동이 관찰되었다. 하지만, 주·야간 사이에는 큰 차이가 없었다(p<0.05). 용존산소 농도를 7 mg l-1에서 3 mg l-1까지 감소시키면, 패각운동의 횟수는 증가를 나타내었으며, 파형도 정상상태와 다르게 불안정한 파형을 보였다. 또한 용존산소가 2 mg l-1로 감소된 후에는 패각운동의 크기가 점차 작아지거나, 폐각상태를 지시하는 파형이 관찰되었다. 이와 같은 생물모니터링 시스템을 패류 양식에 활용하여 빈산소와 같은 해양환경의 이상변동을 신속히 감지할 수 있다면, 어업피해를 감소시킬 수 있을 것으로 기대된다.

펠든크라이스 기법®을 적용한 신체 움직임 프로그램 설계 - 파킨슨병 환자를 중심으로 (Design of Body Movement Program with the Application of Feldenkrais Method® - Foucing on Parkinson's Disease)

  • 박소정
    • 트랜스-
    • /
    • 제14권
    • /
    • pp.35-63
    • /
    • 2023
  • 파킨슨병은 신체 움직임을 담당하는 도파민의 부족으로 신체 기능의 장애로 기본적인 일상생활까지 영향을 미치는 퇴행성 신경질환이다. 현재 의술로는 완치가 힘들어 병의 지연과 예방 차원으로 운동치료에 관심을 모으고 있다. 이에 본 연구에서는 펠든크라이스 기법®을 파킨슨병 환자에게 적용하여 심신의 상태를 스스로 돌볼 수 있는 신체 움직임 프로그램을 설계하고 보급하는데 목적을 갖는다. 펠든크라이스 기법®은 신체 움직임을 이용한 심신 자각 학습 방법으로 신경가소성의 기능인 뇌와 행동을 연결하여 신경계를 재교육하는 방법론이다. 본 연구에서는 연구자가 개발하고 검증한 신체 움직임 프로그램을 펠든크라이스 기법®의 자각(⾃覺)에 초점을 맞추어 수정·보완하였다. 24회기의 신체 움직임 프로그램은 파킨슨병 환자의 자기관리능력을 향상하기 위해 5단계로 구성하였다. 첫 번째 단계는 자기 인식이고 두 번째 단계는 자기 관찰이다. 셋째, 자기조직화, 넷째, 자기 통제. 그리고 다섯 번째 단계는 자기 관리다. 전반적인 변화는 자신의 상태를 인식하고 내적 감각과 외적 환경의 변화를 감지하는 능력을 향상시킨다. 결론적으로 파킨슨병 환자에게 심신 기능의 향상과 자기관리가 가능한 신체 움직임 프로그램을 펠든크라이스 기법을 적용하여 설계하였다. 앞으로 설계된 프로그램을 현장 적용 가능성 여부는 후속과제로 남긴다. 나아가 노년층의 웰니스를 위한 움직임의 참고자료로 메타버스를 적용한 과학분야와의 융합적 협력을 통해 보다 폭넓게 확산될 수 있도록 체계적 구조를 구축할 필요가 있다.

랜섬웨어 공격탐지를 위한 신뢰성 있는 동적 허니팟 파일 생성 시스템 구현 (Implementation of reliable dynamic honeypot file creation system for ransomware attack detection)

  • 국경완;류연승;신삼범
    • 융합보안논문지
    • /
    • 제23권2호
    • /
    • pp.27-36
    • /
    • 2023
  • 최근 몇 년 동안 랜섬웨어 공격이 사회 공학, 스피어피싱, 심지어 기계 학습과 같은 전술을 사용하여 특정 개인이나 조직을 대상으로 하는 공격의 정교함과 더불어 더욱 조직화 되고 전문화되고 있으며 일부는 비즈니스 모델로 운영되고 있다. 이를 효과적으로 대응하기 위해 심각한 피해를 입히기 전에 공격을 감지하고 예방할 수 있는 다양한 연구와 솔루션들이 개발되어 운영되고 있다. 특히, 허니팟은 조기 경고 및 고급 보안 감시 도구 역할 뿐만 아니라, IT 시스템 및 네트워크에 대한 공격 위험을 최소화하는 데 사용할 수 있으나, 랜섬웨어가 미끼파일에 우선적으로 접근하지 않은 경우나, 완전히 우회한 경우에는 효과적인 랜섬웨어 대응이 제한되는 단점이 있다. 본 논문에서는 이러한 허니팟을 사용자 환경에 최적화하여 신뢰성 있는 실시간 동적 허니팟 파일을 생성, 공격자가 허니팟을 우회할 가능성을 최소화함으로써 공격자가 허니팟 파일이라는 것을 인지하지 못하도록 하여 탐지율을 높일 수 있도록 하였다. 이를 위해 동적 허니팟 생성을 위한 기본 데이터수집 모델 등 4개의 모델을 설계하고 (기본 데이터 수집 모델 / 사용자 정의 모델 / 표본 통계모델 / 경험치 축적 모델) 구현하여 유효성을 검증하였다.

전방 차량의 횡간 이동 예측을 위한 차선 간 거리 측정 방법 (Inter-Lane Distance Measurement Method for Predicting the Lateral Movement of the Vehicle in Front)

  • 용성중;박효경;이서영;유연휘;문일영
    • 실천공학교육논문지
    • /
    • 제14권3호
    • /
    • pp.593-600
    • /
    • 2022
  • 자율주행 차량에는 라이다, 레이더, 카메라 등 다양한 센서들이 융합되어 활용되고 있다. 특히 라이더 및 레이더는 고가의 장비로 자율주행 자동차의 대중화를 위해 해결해야 하는 부분으로 고가의 장비를 대체할 수 있는 연구가 지속적으로 이루어지고 있다. 본 논문에서는 비용면에서 저가이면서 손쉽게 장착할 수 있는 단일 카메라를 이용하여 주행 차량의 전방 측면 차량 바퀴와 인접 차선을 감지하고 거리를 추정하는 방법을 제안하였다. 제안된 방법은 입력 영상을 통해 프레임 추출 후 프레임 이미지에서 차선과 바퀴를 검출하고 거리를 측정하여 실제 도로 환경에서 실측 된 거리와 비교하였고, 오차범위 ±3cm 안에서 비교적 정확히 거리를 산출할 수 있었다. 이를 통해 자율주행 자동차의 비용 절감 또는 라이다, 레이더 센서의 고장으로 대체 가능한 수단으로 활용할 수 있을 것으로 판단된다.

Establishment of a deep learning-based defect classification system for optimizing textile manufacturing equipment

  • YuLim Kim;Jaeil Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권10호
    • /
    • pp.27-35
    • /
    • 2023
  • 본 논문에서는 복합소재 생산 분야에서 수요가 높은 프리프레그 섬유 제조 공정에 딥러닝 기반의 결함 검출 및 분류 시스템을 적용하여 생산성을 높이는 과정을 제안한다. 다양한 조건별 다량의 불량 발생으로 해결방안이 필요한 토우 프리프레그 제조 장비에 적용하기 위해 우선 결함 감지와 분류 모델 제작에 필요한 카메라 및 조명을 선정하여 최적의 환경을 구축하였다. 그리고 다중 분류 모델 제작에 필요한 데이터를 수집하고 정상 및 불량 조건에 따라 라벨링을 진행하였다. 다중 분류 모델은 CNN 기반으로 제작하였으며 VGGNet과 MobileNet, ResNet 등의 사전 학습모델을 적용하여 성능을 비교하고 정확도 및 손실 그래프로 개선 방향을 파악한다. 주요 문제로 과적합 문제를 확인하여 개선하기 위해 데이터 증강 및 Dropout 기법을 적용하여 보완하였다. 모델에 대한 성능 평가를 위해 혼돈행렬을 성능지표로 한 성능 평가를 진행하였으며 99% 이상의 성능을 확인하였다. 또한, 실제 공정에 적용하여 실시간 획득된 이미지에 대한 분류 결과를 확인해보며 판별 값이 정확히 도출되는지 확인한다.

군·시도 수준에서의 작물 수확량 추정: 옥수수와 콩에 대한 근적외선 반사율 지수(NIRv) 최댓값의 잠재력 해석 (Unveiling the Potential: Exploring NIRv Peak as an Accurate Estimator of Crop Yield at the County Level)

  • 김대원;권령섭
    • 한국농림기상학회지
    • /
    • 제25권3호
    • /
    • pp.182-196
    • /
    • 2023
  • 작물 수확량의 정확하고 시기 적절한 추정은 세계적인 식량 안보 계획 및 농업 정책 개발을 포함하여 다양한 목적을 위해 중요하다. 원격 감지 기술은 특히 vegetation indices (VIs)를 활용한 작물 상태 모니터링과 예측에서 유망성을 보여주고 있다. 그러나 normalized difference vegetation index (NDVI) 와 enhanced vegetation index (EVI) 와 같은 전통적인 Vis는 식물광합성의 빠른 변화를 포착하는 데 제한이 있으며 작물 생산성을 정확하게 대표하지 못할 수 있다. 대체적인 Vis인 near-infrared reflectance of vegetation (NIRv)는 gross primary productivity (GPP)과 강한 상관관계를 가지며 빛이 반사할 때의 혼동을 해결하는 능력으로 인해 작물 생산량을 예측하는 더 나은 지표로 제안되었다. 연구 결과는 옥수수와 콩 모두에 대해 NIRv의 최댓값과 작물 수확량/면적 간에 유의한 상관관계가 있음을 입증했다. 이 상관관계는 콩에 대해 약간 더 강한 경향을 보였다. 게다가 대부분의 주요한 주에서는 NIRv의 최댓값과 생산량 간에 주목할 만한 관계가 있으며, 다양한 주에서 일관된 경사도를 보였다. 또한, 연간 데이터에서는 대부분의 값이 서로 밀접하게 군집되는 독특한 패턴을 관찰했다. 그러나 2012년은 다양한 주에서 독특한 작물 조건을 시사하는 이상값으로 나타났다. NIRv의 최댓값과 생산량 간의 확립된 관계를 기반으로, 우리는 2022년의 작물 수확량 데이터를 예측하고, 예측의 정확도를 Root Mean Square Percentage Error (RMSPE)를 사용하여 평가했다. 우리의 연구 결과는 지역별 작물 수확량 추정에 NIRv의 최댓값과 잠재력을 나타내며, 다양한 지역에서 정확도는 달라질 수 있다는 것을 보여줄 수 있다.

FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발 (Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA)

  • 이종헌;최지은;라종필
    • 한국전자통신학회논문지
    • /
    • 제19권2호
    • /
    • pp.335-343
    • /
    • 2024
  • 본 논문은 FMCW LiDAR의 실시간 표적 신호처리 기법에 관해 기술하고 있다. FMCW LiDAR는 높은 검출민감도를 가져 낮은 출력만으로 장거리 측정이 가능하면서도 눈, 비, 안개 등 열악한 환경에서 강건한 검출성능을 가져 자율주행자동차용 차세대 LiDAR로 주목받고 있다. 본 논문은 주파수 영역의 신호처리를 위해 필요한 고속 데이터 획득, 전송 및 병렬 신호처리를 위한 하드웨어 구조에 대해 기술하였다. 획득된 시계열 신호로부터 주파수 특성을 분석하기 위하여, 푸리에 변환 연산을 FPGA로 구현하였다. 변환된 주파수영역 데이터로부터 강건한 표적검출 성능을 확보하기 위한 C-FAR 알고리즘에 대해 기술하였다. 표적의 스펙트럼 신호로부터 주파수 측정값의 해상도를 향상하고, 측정된 주파수 값을 표적의 거리 및 속도 정보로 변환하는 과정에 대해 상세히 기술하였다. 스캐너 2D 위치 및 표적의 거리 정보를 활용하여 3차원 영상으로 변환하고 이를 전시하였다. 제안된 FPGA 구조의 병렬 신호처리 알고리즘 적용을 통하여 FMCW LiDAR의 실시간 표적 신호처리 및 고해상도 영상획득 성능을 확인하였다.

디지털 리더십과 동적 디지털 역량, 조직의 수용의도가 디지털 전환 수준에 미치는 영향 (The Impact of Digital Leadership, Dynamic Digital Capabilities and Organization Acceptance Intention on Business Digital Transformation)

  • 김민철;김진권;안동희
    • 산업융합연구
    • /
    • 제22권5호
    • /
    • pp.23-37
    • /
    • 2024
  • 최근 4차 산업혁명이라 일컬어지는 디지털 기술의 급속한 변화와 시장 환경의 불규칙한 변화 속에서 기업에서는 첨단화, 융합화된 디지털 기술을 신속히 감지하고 포착하여, 조직에 맞게 적용하는 동적 디지털 역량이 핵심 요소라고 할 수 있다. 본 연구는 기업에서 디지털 리더십과 디지털 전환과의 관계에 영향을 미치는 다양한 요인들을 알아보는 데 목적이 있으며, 특히 조직의 동적 디지털 역량과 조직의 디지털 수용 의도의 매개 혹은 조절 효과를 실증 분석하고자 한다. 전국의 산업단지 내 미니클러스터 참여기업을 대상으로 설문조사를 수행하여 수집한 258부의 자료를 표본으로 가설을 검증하였다. 연구결과 동적 디지털 역량은 디지털 리더십과 디지털 전환과의 관계에서 유의한 매개효과를 보였고, 디지털 수용의도는 동적 디지털 역량과 디지털 전환과의 관계에서 조절효과를 보였다. 본 연구는 조직에서의 동적 디지털 역량, 디지털 수용의도의 개념과 측정항목을 체계화하였으며, 기업에서 디지털 전환 추진 시 동적 디지털 역량을 어떻게 측정 및 제고하고, 조직원의 디지털 수용의도를 어떻게 활용할 것인지에 관한 시사점을 제시하였다는 점에 의의가 있다.

스마트폰 센서를 이용한 PDR과 칼만필터 기반 개선된 실내 위치 측위 기법 (Enhanced Indoor Localization Scheme Based on Pedestrian Dead Reckoning and Kalman Filter Fusion with Smartphone Sensors)

  • 하런자밀;나임 이크발;무라드 알리 칸;시이드 세흐르야 알리 나크비;김도현
    • 사물인터넷융복합논문지
    • /
    • 제10권4호
    • /
    • pp.101-108
    • /
    • 2024
  • 실내 위치 측위는 대형 건물에서 내비게이션부터 비상 대응까지 다양한 애플리케이션이다. 본 논문에서는 스마트폰 센서를 이용하고 신경망 기반 동작 인식, 칼만 필터 기반 오류 수정, 다중 센서 데이터 융합을 통합한 향상된 PDR(Pedestrian Dead Reckoning) 기반 보행자 실내 위치 측위 기법을 제시한다. 제안된 기법은 가속도계, 자력계, 자이로스코프, 기압계의 데이터를 활용하여 사용자의 위치와 방향을 정확하게 측위하며, 신경망은 센서 데이터를 처리하여 동작 모드를 분류하고 보폭과 방향 계산에 대한 실시간 조정을 제공한다. 칼만 필터는 이러한 추정치를 더욱 구체화하여 누적 오류와 드리프트를 줄이며, 대형 건물의 여러 층에서 스마트폰을 사용하여 수집한 실험 결과는 수직 이동과 진행 방향 변화를 정확하게 추적하는 능력을 보여준다. 성능 비교 분석 결과에서 제안된 CNN-LSTM 모델은 각도예측에서 기존 CNN 및 Deep CNN 모델보다 성능이 뛰어난 것으로 나타났으며. 또한 기압 데이터를 통합하여 정확한 바닥 수준 감지가 가능해 다층 환경에서 시스템의 견고성을 향상시켰으며, 이 제안된 접근 방식은 실내 위치 파악의 정확성과 신뢰성을 크게 향상시켜 실제 응용 분야에서 활용 가능성이 높다고 판단된다.

개선된 영상 정보를 이용한 가혹한 환경에서의 후방 차량 감지 방법 (Rear Vehicle Detection Method in Harsh Environment Using Improved Image Information)

  • 정진성;김현태;장영민;조상복
    • 전자공학회논문지
    • /
    • 제54권1호
    • /
    • pp.96-110
    • /
    • 2017
  • 기존의 차량 검출 연구들의 대부분은 일반렌즈 또는 광각렌즈를 가지는 후방 카메라를 사용하기 때문에 사각지대가 넓으며, 영상에 노이즈 및 다양한 외부 환경에 취약한 부분이 있다. 본 논문에서는 사각지대를 줄이고, 노이즈 및 가혹한 외부 환경에서도 인식이 가능한 검출 방법을 제안한다. 먼저 광각렌즈보다 더 넓은 화각을 가진 어안렌즈를 이용해 사각지대를 최소화한다. 렌즈의 화각이 커진 만큼 비선형 방사왜곡도 커지게 되므로, 정확한 영상 결과를 얻기 위해서 왜곡 상수 초기화와 최적화를 실시한 후 Calibration을 이용하였다. 그리고 Calibration과 동시에 원본 영상을 분석하여 안개가 자욱한 상황과 갑작스러운 조도 변화로 인해 생기는 명순응, 암순응 현상에 의한 시야 방해 상황에서도 인식이 가능하도록 안개 제거와 밝기 보정을 이용하였다. 안개 제거는 일반적으로 계산 시간이 매우 크다. 따라서 계산 시간을 줄이기 위해 대표적인 안개 제거 알고리즘인 Dark channel prior를 기반으로 안개를 제거하였다. 밝기 보정 시에는 Gamma correction을 이용했고, 보정에 필요한 Gamma value를 결정하기 위해 영상에 대한 밝기 및 명암 평가가 수행하였다. 평가는 영상의 전체가 아닌 일부분을 이용하여 할애되는 계산시간을 줄였다. 밝기 및 명암 값이 계산되면 그 값을 이용해 Gamma value를 결정하고 전체 영상에 보정을 실시하였다. 그리고 밝기 보정과 안개 제거로 나누어 병렬 처리한 후, 영상을 하나로 정합함으로써 전 처리 과정의 연산시간을 줄였다. 이후 보정된 영상으로부터 특징추출법인 HOG를 이용하여 차량을 검출하였다. 그 결과 본 논문에서 제안하는 방법의 영상 보정을 이용한 차량 검출을 하는데 1프레임당 0.064초가 걸렸으며, 기존의 차량 검출 방법에 비해 7.5%의 향상된 검출률을 얻었다.