• Title/Summary/Keyword: 환경의 불확실성

Search Result 1,179, Processing Time 0.028 seconds

Context Driven Real-Time Laser Pointer Detection and Tracking (상황 기반의 실시간 레이저 포인터 검출과 추적)

  • Kang, Sung-Kwan;Chung, Kyung-Yong;Park, Yang-Jae;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.211-216
    • /
    • 2012
  • There are two kinks of processes could detect the laser pointer. One is the process which detects the location of the pointer. the other one is a possibility of dividing with the process which converts the coordinate of the laser pointer which is input in coordinate of the monitor. The previous Mean-Shift algorithm is not appropriately for real-time video image to calculate many quantity. In this paper, we proposed the context driven real-time laser pointer detection and tracking. The proposed method is a possibility of getting the result which is fixed from the situation which the background and the background which are complicated dynamically move. In the actual environment, we can get to give constant results when the object come in, when going out at forecast boundary. Ultimately, this paper suggests empirical application to verify the adequacy and the validity with the proposed method. Accordingly, the accuracy and the quality of image recognition will be improved the surveillance system.

Object Detection and Tracking using Bayesian Classifier in Surveillance (서베일런스에서 베이지안 분류기를 이용한 객체 검출 및 추적)

  • Kang, Sung-Kwan;Choi, Kyong-Ho;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.297-302
    • /
    • 2012
  • In this paper, we present a object detection and tracking method based on image context analysis. It is robust from the image variations such as complicated background, dynamic movement of the object. Image context analysis is carried out using the hybrid network of k-means and RBF. The proposed object detection employs context-driven adaptive Bayesian framework to relive the effect due to uneven object images. The proposed method used feature vector generator using 2D Haar wavelet transform and the Bayesian discriminant method in order to enhance the speed of learning. The system took less time to learn, and learning in a wide variety of data showed consistent results. After we developed the proposed method was applied to real-world environment. As a result, in the case of the object to detect pass outside expected area or other changes in the uncertain reaction showed that stable. The experimental results show that the proposed approach can achieve superior performance using various data sets to previously methods.

A Study on the Implementation of an optimized Algorithm for association rule mining system using Fuzzy Utility (Fuzzy Utility를 활용한 연관규칙 마이닝 시스템을 위한 알고리즘의 구현에 관한 연구)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • In frequent pattern mining, the uncertainty of each item is accompanied by a loss of information. AAlso, in real environment, the importance of patterns changes with time, so fuzzy logic must be applied to meet these requirements and the dynamic characteristics of the importance of patterns should be considered. In this paper, we propose a fuzzy utility mining technique for extracting frequent web page sets from web log databases through fuzzy utility-based web page set mining. Here, the downward closure characteristic of the fuzzy set is applied to remove a large space by the minimum fuzzy utility threshold (MFUT)and the user-defined percentile(UDP). Extensive performance analyses show that our algorithm is very efficient and scalable for Fuzzy Utility Mining using dynamic weights.

Models of Reliability Assessment of Ultrasonic Nondestructive Inspection (초음파 비파괴검사의 신뢰도 평가 모델)

  • Park, I.K.;Park, U.S.;Kim, H.M.;Park, Y.W.;Kang, S.C.;Choi, Y.H.;Lee, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.607-611
    • /
    • 2001
  • Ultrasonic inspection system consist of the operator, equipment and procedure. The reliability of results in ultrasonic inspection is affected by its ability. Furthermore, the reliability of nondestructive testing is influenced by the inspection environment, materials and types of defect. Therefore, it is very difficult to estimate the reliability of NDT due to the various factors. In this study, the probability of detection by logistic probability model and Monte Carlo simulation is used for the reliability assessment of ultrasonic inspection. The utility of the NDT reliability assesment is verified by the analysis of the data from round robin test nth these models.

  • PDF

Adaptive Multi-level Streaming Service using Fuzzy Similarity in Wireless Mobile Networks (무선 모바일 네트워크상에서 퍼지 유사도를 이용한 적응형 멀티-레벨 스트리밍 서비스)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3502-3509
    • /
    • 2010
  • Streaming service in the wireless mobile network environment has been a very challenging issue due to the dynamic uncertain nature of the channels. Overhead such as congestion, latency, and jitter lead to the problem of performance degradation of an adaptive multi-streaming service. This paper proposes a AMSS (Adaptive Multi-level Streaming Service) mechanism to reduce the performance degradation due to overhead such as variable network bandwidth, mobility and limited resources of the wireless mobile network. The proposed AMSS optimizes streaming services by: 1) use of fuzzy similarity metric, 2) minimization of packet loss due to buffer overflow and resource waste, and 3) minimization of packet loss due to congestion and delay. The simulation result shows that the proposed method has better performance in congestion control and packet loss ratio than the other existing methods of TCP-based method, UDP-based method and VBM-based method. The proposed method showed improvement of 10% in congestion control ratio and 8% in packet loss ratio compared with VBM-based method which is one of the best method.

신경회로의 로보트 및 자동화 응용

  • 오세영
    • The Magazine of the IEIE
    • /
    • v.18 no.10
    • /
    • pp.29-38
    • /
    • 1991
  • 제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각 인식, 음성인식, 촉각 감지등 패턴 인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control)역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로봇 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어(neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적, 학습, 불확실한 환경에서의 적응, 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로봇나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시한 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로봇나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어(intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구개발 투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로봇 및 시스템 제어에 관한 기초 이론과 신경회로 적용기술을 소개하고 기존방법과 비교했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.

  • PDF

The Strategic Decision Supports using Knowledge Transformation Process (지식변환과정을 활용한 전략적 의사결정지원 방법론에 관한 연구)

  • Park, Ki-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.55-65
    • /
    • 2008
  • The strategic decision makers of the firm have faced with uncertainty and complexity. Although they must make decision under these environments, they can't have enough time, man power, budget and knowledge that they need to decide. They can't, therefore, help getting supports by experts who have implicit knowledge about the domain. But it is difficult for them to find any other procedures and methods to create, transform, combine, and apply new knowledges, whenever decision makers face the problem This paper provides a new method to support a strategic decision making by using the knowledge transformation process suggested by Nonaka. We illustrate an application case of the strategic decision making in consulting industry. This paper uses cognitive map as a decision support technology based on the suggested method.

  • PDF

Management Result Effecting Factors Through the Business Intelligence (비즈니스 인텔리전스 도입이 경영성과에 미치는 영향)

  • Kim, Hyun-Joon;Yang, Hae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.431-448
    • /
    • 2008
  • The change of management paradigm is that information technology change according to technology evolution at present is applied to corporate management, is that management level must be adapted to uncertainty management environment with activity and be made decision based on analyzed real time information through information system. This produces the effective target achievement and efficiency business productivity guarantee. At the present day, importation of business intelligence like enterprise information system has been the essential factor in business activities. Therefore, It is very important to give lessons the enterprises for building the business intelligence selecting the major success factors of more influence to managing results. In this paper, to authorize the research model and research constructions through theory study of literatures and surveying statics analysis prove the relational influences among the influencing factors related business intelligence system buliding.

신경컴퓨터(Neural Network)을 이용한 로보트 제어

  • 오세영
    • Information and Communications Magazine
    • /
    • v.9 no.11
    • /
    • pp.70-79
    • /
    • 1992
  • 제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각인식, 음성인식, 촉각감지 등 패턴인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control) 역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로보트 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어 (neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적 학습 불확실한 환경에서의 적응 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로보트나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시간 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로보트나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어 (intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제 경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구 개발투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로보트 및 시스템 제어에 관한 기초 이론을 설명하고 신경회로 적용기술을 소개하고 기존 방법과 비교 했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.

  • PDF

The Effect of SME's Organizational Capabilities on Proactive CSR and Business Performance (중소제조기업 조직역량이 선도적 사회적 책임활동 및 성과에 미치는 영향)

  • Bae, Jeong-Ho;Park, Hyeon-Suk
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.181-197
    • /
    • 2016
  • With regard to CSR, Proactive CSR has been less researched in small and medium enterprises(SMEs). This study examines empirically the association between SME's organizational capabilities, proactive CSR and performance as well as a moderating role of perceived uncertainty between capabilities and proactive CSR. Using quantitative data collected from sample of 485 SMEs in Korea, we find that all specified capabilities are positively associated with adoption of proactive CSR by SMEs and that proactive CSR is, in turn, associated with an improvement in firm performance. In addition, we also find a mediating role of proactive CSR on the association between capabilities and performance as well as a moderating role of perceived uncertainty between capabilities and performance. The study is likely to contribute to SME's CSR strategy.