환각은 대형언어모형이나 대형 멀티모달 모형의 활용을 막는 큰 장벽이다. 본 연구에서는 최신 환각 연구 동향을 살펴보기 위해 챗 GPT 등장 이후인 2022년 12월부터 2024년 1월까지 아카이브(arXiv)에서 초록에 '환각'이 포함된 컴퓨터과학 분야 논문 654건을 수집해 빈도분석, 지식연결망 분석, 문헌 검토를 수행했다. 이를 통해 분야별 주요 저자, 주요 키워드, 주요 분야, 분야 간 관계를 분석했다. 분석 결과 '계산 및 언어'와 '인공지능', '컴퓨터비전 및 패턴인식', '기계학습' 분야의 연구가 활발했다. 이어 4개 주요 분야 연구 동향을 주요 저자를 중심으로 데이터 측면, 환각 탐지 측면, 환각 완화 측면으로 나눠 살펴보았다. 주요 연구 동향으로는 지도식 미세조정(SFT)과 인간 피드백 기반 강화학습(RLHF)을 통한 환각 완화, 생각의 체인(CoT) 등 추론 강화, 자동화와 인간 개입의 병행, 멀티모달 AI의 환각 완화에 대한 관심 증가 등을 들 수 있다. 본 연구는 환각 연구 최신 동향을 파악함으로써 공학계는 물론 인문사회계 후속 연구의 토대가 될 것으로 기대한다.
최근들어 ChaGPT를 비롯한 생성형AI서비스가 화두가 되고 있다. 디지털 네이티브인 Z세대 뿐만 아니라 디지털 이민자인 시니어들도 관심을 가지고 있는 서비스이다. 이러한 시점에서 시니어를 대상으로 생성형AI 서비스 이용의도에 영향을 미치는 요인에 대해 실증분석을 하였다. 이를 위해 시니어를 대상으로 설문조사를 실시하였으며 유효한 250부를 분석에 활용하였다. 본 연구에서는 시니어의 기술수용에 관한 연구모형인 MATOA(Model for the Adoption of Technology by Older Adults)를 토대로 성과기대, 노력기대, 사회적영향, 사전지식, 시니어의 생리적노화현상 및 생성형AI서비스의 환각을 독립변수로 설정했다. 분석은 다중회귀분석방법을 사용하였다. 실증분석결과는 다음과 같다. 성과기대와 사회적영향은 시니어의 생성형AI서비스 이용의도에 유의한 정(+)의 영향을 미쳤다. 또한 사전지식은 시니어의 생성형AI 서비스 이용의도에 유의한 정(+)의 영향을 미쳤고 생리적노화현상은 유의한 부(-)의 영향을 미쳤다. 한편, 노력기대 및 AI 환각(hallucinations)이 시니어의 생성형AI 서비스 이용의도에 미치는 유의한 영향 관계는 검정되지 않았다. 영향을 미치는 변인의 영향력 순서는 성과기대, 사회적영향, 사전지식, 생리적노화현상 순이었다. 이러한 연구결과를 토대로 학술적 및 실무적 시사점을 제시하였다.
Large Language Model(LLM)의 급격한 발전은 자연어 처리 분야에 혁신을 불러 일으켜 이를 적절하게 활용하는 것이 중요한 주제로 떠오르고 있다. 방대한 데이터로 훈련된 LLM은 다양한 주제에 대한 텍스트 생성이 가능하여 콘텐츠 생성, 기계 번역, 챗봇 등 여러 방식으로 적용이 가능하나 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어렵다는 단점이 존재한다. 모델 훈련이 완료된 이후의 최신 정보로 즉각 업데이트되기도 어려우며, 모델이 실제로 존재하지 않는 정보나 오류에 대해 그럴 듯하게 답변하는 환각 현상(Hallucination) 역시 주요 문제점이다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval-Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상하기 위한 연구가 활발히 이루어지고 있다. 본 논문에서는 RAG의 기본 아키텍처를 소개하고, LLM에 RAG를 적용하기 위한 연구 및 최적화의 최신 동향을 분석한다. RAG를 평가하기 위한 다양한 기법들을 소개하고, 실제 산업에서 RAG를 활용하기 위해 성능을 최적화하거나 응용한 사례들을 분석한다. 이를 바탕으로 향후 RAG 모델이 발전할 수 있는 연구 방향성을 제시하고자 한다.
본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.
거대언어모델(LLM)에 대한 수요와 활용 사례가 증가함에 따라 사용자의 민감정보가 LLM 사용 과정 중에 입력 및 유출되는 위험성 또한 증가하고 있다. 일반적으로 LLM 환각 문제의 해결을 위한 도구로 알려진 지식그래프는, LLM과는 별개로 구축되어 사용자의 민감정보를 별도로 보관 및 관리할 수 있으므로, 민감정보의 유출 가능성을 최소화하는 하나의 방법이 될 수 있다. 따라서 본 연구는 사용자로부터 입력된 자연어 기반의 질문을 LLM을 통해 지식그래프 유형에 맞는 쿼리문으로 변환하고 이를 이용하여 쿼리 실행과 결과 추출을 진행하는 지식그래프 기반 챗봇을 제시한다. 또한 본 연구에서 개발된 지식그래프 기반 챗봇의 기능적 유효성 판단을 위하여, 기존 지식그래프에 대한 이해도와 적응력, 새로운 개체 클라스 생성 능력, 그리고 지식그래프 콘텐츠에 대한 LLM의 접근 가능성 여부를 판단하는 성능 테스트를 수행한다.
글로벌 시장에서 Large Language Model(LLM)의 발전이 급속하게 이루어지며 활용도가 높아지고 있지만 특정 유형이나 전문적 지식이 부족할 수 있어 일반화하기 어려우며, 새로운 데이터로 업데이트하기 어렵다는 한계점이 있다. 이를 극복하기 위해 지속적으로 업데이트되는 최신 정보를 포함한 외부 데이터베이스에서 정보를 검색해 응답을 생성하는 Retrieval- Augmented Generation(RAG, 검색 증강 생성) 모델을 도입하여 LLM의 환각 현상을 최소화하고 효율성과 정확성을 향상시키려는 연구가 활발히 이루어지고 있다. 본 논문에서는 LLM의 검색 기능을 강화하기 위한 RAG의 연구 및 평가기법에 대한 최신 연구 동향을 소개하고 실제 산업에서 활용하기 위한 최적화 및 응용 사례를 소개하며 이를 바탕으로 향후 연구 방향성을 제시하고자 한다.
요즘 기업의 경쟁력은 조직이 축적한 조직의 지식들을 모든 조직원들이 잘 공유하고 활용하는 능력에 달려있다. 이것을 증명이라도 하듯이 지금 세상은 LLM(거대언어모델)의 기반의 생성형 AI 기술을 이용한 쳇GPT서비스에 대해 집중하고 있다. 하지만, 쳇GPT 서비스를 업무에 적용하기에는 아직 환각성 문제가 많아 어려운 상태이다. 이 문제를 해결하기 위해 sLLM(경량거대언어모델) 기술이 대안으로 제시되고 있다. sLLM을 구성하기 위해서는 기업데이터가 필수적으로 필요하다. 기업데이터는 조직의 ERP Data와 조직이 보존하고 있는 기업의 오피스 문서 지식 데이터이다. ERP Data는 sLLM과 직접 연결하여 활용할 수 있으나 오피스 문서는 파일 형태로 저장되어 있어서 데이터 형태로 변환하여야 sLLM과 연결하여 활용할 수 있다. 뿐만 아니라 파일 형태로 저장되어져 있는 오피스 문서들을 조직을 지식 정보로 활용하기에는 기술적 제약 사항이 너무 많다. 본 연구는 오피스 문서를 파일 형태가 아닌 DB 형태로 저장하는 방법을 제시함으로서 기업이 기 축적 된 오피스 문서를 조직의 지식 시스템으로 잘 활용할 수 있게 하고, 기업의 sLLM에 오피스 문서를 데이터 형태로 제공하여 AI 기술과 접목하여 기업 경쟁력을 향상 시키는데 기여하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.